证明二次函数y=ax^2+bx+c(a>0)在[-b/2a,+∞)上是增函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:55:09
证明二次函数y=ax^2+bx+c(a>0)在[-b/2a,+∞)上是增函数
xQIO@+ܤ)k?B4iM8VD5ժ ! (`P(ȼ >:%@o޼[b)mY:=܀YB$Q%_#뉠L:X e u~}meVFt>>17$:DZ4 kJH$ATIL A<%!a߰J)|̻Emm/q/D2,;7cpx[1fo\k^a 4ю!gjdAf@ֈXHc5[feYYG ~:vt1>K`{\Rӥȑ OMv?

证明二次函数y=ax^2+bx+c(a>0)在[-b/2a,+∞)上是增函数
证明二次函数y=ax^2+bx+c(a>0)在[-b/2a,+∞)上是增函数

证明二次函数y=ax^2+bx+c(a>0)在[-b/2a,+∞)上是增函数
用函数单调性定义证明.
设x1、x2在[-b/2a,+∞)上且x1-b,所以a(x1+x2)+b>0
所以f(x1)-f(x2)=(x1-x2)[a(x1+x2)+b]0)在[-b/2a,+∞)上是增函数

法一:证明:因为二次函数y=ax^2+bx+c中a>0,所以,抛物线开口向上,切在对称轴左侧单调递减,右侧单调递增,而其对称轴为x=-b/2a,故有f(x)在[-b/2a,+∞)上是增函数。
法二:证明:f'(x)=2ax+b,令2ax+b>0,得x>-b/2a (a>0).又f(x)在x=-b/2a上有意义,
所以f(x)[-b/2a,+∞)上是增函数....

全部展开

法一:证明:因为二次函数y=ax^2+bx+c中a>0,所以,抛物线开口向上,切在对称轴左侧单调递减,右侧单调递增,而其对称轴为x=-b/2a,故有f(x)在[-b/2a,+∞)上是增函数。
法二:证明:f'(x)=2ax+b,令2ax+b>0,得x>-b/2a (a>0).又f(x)在x=-b/2a上有意义,
所以f(x)[-b/2a,+∞)上是增函数.

收起