在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.若AD=根号3,AB=BC=2,P为AC的中点,求三棱锥P-A1BC的体积.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:50:47
在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.若AD=根号3,AB=BC=2,P为AC的中点,求三棱锥P-A1BC的体积.
xKOQǿ+d^@˘ ew<@hPi>|(TBiEPX~;wfXzfnLn&9{?'Luc 0O H=UP󰳶 M0d=/9\\hUgl4Qq' /)hf.rB%l9wg>r 1`|lt@y&R`s1ă MN&œd"喥­$ƈW*%!&#!Z$s~˴"I*U5aC/)ЬV(K2~+Ɍ&QK1*X+'I@܉Y|=EbY*J %b}$$vɑ?dPY,->$nP~ߪn}Ͷx XQn4zK / cwcdiʼnzO) 'LGhg@Xp21 Ac{?G4G1#n5n;K0A"{s :YwJT\18%|']g](VG@BS/Om}Ұ= A}

在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.若AD=根号3,AB=BC=2,P为AC的中点,求三棱锥P-A1BC的体积.
在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.
若AD=根号3,AB=BC=2,P为AC的中点,求三棱锥P-A1BC的体积.

在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.若AD=根号3,AB=BC=2,P为AC的中点,求三棱锥P-A1BC的体积.
直角三角形ADB,AD=根号3,AB=2 可计算得出A1A=2√3这就是三棱锥的高
因为AD⊥A1BC,所以AD⊥BC
因为AA1⊥ABC,所以AA1⊥BC
所以BC⊥AA1B,所以BC⊥AB
三角形BCP面积=½½2X2=1
三棱锥体积=(2√3)/3

由题意知AB垂直BC,通过AB=BC,及中点可以知道BP⊥AC,可以算出三角形BPC的面积(为三角形ABC的一半),由AD⊥A1B及数据知道∠ABD=60°从而算出AA1的值,那么所求的三棱锥的体积也等于三棱锥A1-PBC的体积,由三棱锥的体积公式三分之一的底面积乘以高就可以求出答案。...

全部展开

由题意知AB垂直BC,通过AB=BC,及中点可以知道BP⊥AC,可以算出三角形BPC的面积(为三角形ABC的一半),由AD⊥A1B及数据知道∠ABD=60°从而算出AA1的值,那么所求的三棱锥的体积也等于三棱锥A1-PBC的体积,由三棱锥的体积公式三分之一的底面积乘以高就可以求出答案。

收起

答案:划整体到细部,首先把P-A1BC切割出来。剩下的部分根据已知数据求出

,在直三棱柱ABC-A1B1C1中,若AB1⊥BC1.且AC=BC.求证:AB1⊥A1C 在直三棱柱ABC-A1B1C1中,BC1⊥AB1,BC1⊥A1C,求证:AB=AC 如图在直三棱柱ABC-A1B1C1中,AB=BC=2AA1 如图,在直三棱柱ABC-A1B1C1中 求教如何求体积 如图,直三棱柱ABC-a1b1c1 直三棱柱ABC-A1B1C1中,BC1⊥AB1,BC1⊥A1C,求证:AB1=A1C 证明:在直三棱柱A1B1C1-ABC中,BC=CC1 ,当底面A1B1C1满足条件(∠A1C1B1是直角)时,有AB1⊥BC1. 在直三棱柱ABC——A1B1C1中,AB=1,AC=AA1=根号三,∠ABC=60°,求证AB⊥A1C. 已知直三棱柱中在直三棱柱ABC—A1B1C1中,AB=BC=BB1,D为AC的中点,求证:在直三棱柱ABC—A1B1C1中,AB=BC=BB1,D为AC的中点,求证:1,面A1BD⊥面A1ACC1,2,若AC1⊥面A1BD,则B1C1⊥面ABB1A1. 在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上,P为AC的中点,(1)求证:B1C‖平面A1BP(2)求证:BC⊥A1B 在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE ...在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点求证:(1)平 在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=√3,∠ABC=60度,求证:AB⊥A1C. 已知在直三棱柱ABC~A1B1C1,A1B⊥B1C,A1B⊥AC1证明AC=BC如果B1C⊥AC1证三棱柱是正三棱柱 在直三棱柱ABC—A1B1C1中,AB=2,AC=AA1=2倍根号3, 在直三棱柱ABC-A1B1C1中,平面A1BC垂直侧面A1ABB1,求证AB垂直BC(急!) 在直三棱柱ABC-A1B1C1中,AB1垂直于BC1,AB=CC1,求证AC1垂直于AB 如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C 如图,在直三棱柱ABC—A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC中点,求证:B1C1⊥平面ABB1A1