设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )A.cov(X1,Y)=(λ^2)/n B.cov(X1,Y)=λ^2C.D(X1,Y)=[(n+2)/n]*(λ^2) D.D(X1,Y)=[(n+1)/n]*(λ^2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:40:54
设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )A.cov(X1,Y)=(λ^2)/n B.cov(X1,Y)=λ^2C.D(X1,Y)=[(n+2)/n]*(λ^2) D.D(X1,Y)=[(n+1)/n]*(λ^2)
x){nYz?e{NΣeyyvϻ<_tBӎ;uMts t^iacFa]fDӎ ze@"5m5@4Abz.P^F6HID !MR> 6(ǃU;sڎpT""*"4@Al̳Ά'lt/.H̳ %

设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )A.cov(X1,Y)=(λ^2)/n B.cov(X1,Y)=λ^2C.D(X1,Y)=[(n+2)/n]*(λ^2) D.D(X1,Y)=[(n+1)/n]*(λ^2)
设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )
A.cov(X1,Y)=(λ^2)/n B.cov(X1,Y)=λ^2
C.D(X1,Y)=[(n+2)/n]*(λ^2) D.D(X1,Y)=[(n+1)/n]*(λ^2)

设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )A.cov(X1,Y)=(λ^2)/n B.cov(X1,Y)=λ^2C.D(X1,Y)=[(n+2)/n]*(λ^2) D.D(X1,Y)=[(n+1)/n]*(λ^2)
cov(X1,Y)=1/n·∑(i=1~n)cov(X1,Xi)=1/n·cov(X1,X1)=(λ^2)/n

所以,选A

【请教高手】概率论多维随机变量证明题设连续随机变量X1、X2……Xn独立同分布,试证P(Xn>max(X1、X2、……Xn-1))=1/n 设随机变量X1,X2,---,Xn独立同分布且具有相同的分布密度,证明:P{Xn>max(X1,X2,...,Xn-1)}=1/n 设x1.x2,.xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2关于柯西不等式的 设x1,x2,.,xn为正整数.求证(x1+x2+.xn)(1/x1+1/x2+.1/xn)>=n平方 设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X=sum(Xn/(3^n))设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1.随机变量X=sum(Xn/(3^n)){n从1到无穷 设随机变量X1,X2.Xn中任意两个的相关系数均为ρ,试证明ρ≥-1/(n-1) 设随机变量X1,X2.Xn中任意两个的相关系数均为ρ,试证明ρ≥-1/(n-1) 设随机变量X1,X2,…,Xn(n>1)d独立同分布,且其方差为a^2>0,令Y=1/nEX1,则 设x1 x2 ……xn属于R+ 且x1+x2+……+xn=1求证 x1^2/(1+x1) +x2^2/(1+x2)+……+xn^2/(1+xn)≥ 1/(n+1) 设x1 x2 ……xn属于R+ 且x1+x2+……+xn=1求证 x1^2/(1+x1) +x2^2/(1+x2)+……+xn^2/(1+xn)≥ 1/(n+1) 设x1 x2 ……xn属于R+ x1+x2+……+xn=1求证 x1^2/(1+x1) +x2^2/(1+x2)+……+xn^2/(1+xn)≥ 1/(n+1) 设x1、x2、……、xn∈R+ 求证:(x1²/x2)+(x2²/x3)+……+(x²(n-1)/xn)+(xn²/x1)≥x1+x2+……+xn 设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n 设整数n>=2,正实数x1,x2,……xn满足(x1+x2+……xn)(1/x1+1/x2+……1/xn)=n^2+1求证:(x1^2+x2^2+……+xn^2)(1/x1^2+1/x2^2+……+1/xn^2)>=n^2+4+2/n(n-1) 设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )A.cov(X1,Y)=(λ^2)/n B.cov(X1,Y)=λ^2C.D(X1,Y)=[(n+2)/n]*(λ^2) D.D(X1,Y)=[(n+1)/n]*(λ^2) 设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...+xn^2/1设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...+xn^2/1+xn=>1/1+n 设xi∈R+(i=1,2,n),求证:x1^x1x2^x2,xn^xn≥(x1x2,xn)^1/n(x1+x2+,+xn) 设x1,x2……xn为整数设 X1,X2,...Xn 整数 并且满足:(1)-1小于等于Xi小于等于2 ,i=1,2,...,n:(2)X1+X2+,Xn=19:(3)X1^2+X2^2+.Xn^2=99 求X1^3+X2^3+.Xn^3的最大值与最小值