谁能给我讲一下伽利略相对性原理和爱因斯坦相对性原理,还有非惯性系和惯性力的关系!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:59:11
谁能给我讲一下伽利略相对性原理和爱因斯坦相对性原理,还有非惯性系和惯性力的关系!
x}rZK櫜= 3>]W?@@@6],Y..uȽ7 }kN6HHvuEt8džܹ3W˷./KJy͠v;l&̰3֩487j>dԍ98|6m,z[Sfowǿϋ?wܳ)]ѰjJ?"cn^` u1> aX\aۭa/gkE w} ~Z$/Bsyc? ~@? ;p=^i {[Zitho|Y*.+bNlg~{+OQCM!uTs0Sga#ߺ>?DV=aR'%9燭t0(aXw]ڊ HG_:wl_c2YB' &u{1a/Z[8*e_^z"/5bfidStLWj{ 7(r^g?1@s<yI>Rcv:ї8vpF)7G5pzҗ}bQzJ%߰U1 |<$G; |}>9i૘~D~ ~/L̬ 8 &)L_koId݆<01~ I ]uCc~;(WvvmjZ~ 6v2=YPH=/CU&ƟWet74bɶMjUN缕YhAh`5=j\K|C1{WcNx7GAq3f=v4VVH+a*GS)6쭎M2l@:z Yh h\eamaj)G5p~cO֍_0/Wvv>c?gs<Ģ$&PvNM?eWҹ`@'K8ذ=l eλۊelR?9S2Gu&=X> Hh%İm+Ճ#yMM%!k%ͲD܏ֲ^rR|ۄ)zDvTJ-VLa_|t (,llrA g;f/҉񑻮^r;n\mC!s^7l\xȝRSSӟioLrſ?鿓@˘L8:ۆA!7VLw$OMm*5Z\~ũa 1oR ^RolPeTPdAycu*,hzIfŠ3Oz#Mz/~c!YMʩ]@EAŠAx3Jq>+B˄dy*E).Y1?}0:8cwد~kqc4ɿ4ޫrԕO7us3f`$8O?\ѕܡd#FW/()5냘c)=2LtȄ)czVҰ_nbeTP丨噘wxNT8ۂ+|How\%ڍjHd>~1CPur;W"lhQ[Q1dj62Thڳk?>'Bהڧz]LC8>:c)Ca[ Tc1Z]1QoX>voFcu8~Iԃ(IjSk;{8d2te]2}Sx=1Jڢ%EU@]{V-cQ2$UrIb!6T4hWDf,v=E\05(C 6KU΃W"3'hg-!敀?$!O3Bh@M,w~2Z[z"T::Ix-4"Ľl>z1'iG9fKFky{h:AsqV:`Ћw0J,JAooxE™hrgЬUSGbG։ck9O %IsC>Kt.N 1BpatcBB$,RA.]/┄ÖaYtQ,5R짤]CEZϨ"&P:wG#гWg߷_ Wq _ux2б(Y`phO6>(-oǽ&T @qκUME~jKf|6߷R4w )hJVe_0+B U'&w$}}72nE嘡& f琾d-cO|Ѣv[W`k3'}`K07 qi60fWiכ9 [_ekEQPE`&tkSA`^dprq4`sSa}ռߴ^*6'L3E! o@hݘ ;S,207 )P!55MU`)v-H .: Η m\-\Ʊ&]P a&aqZ&Ű/[J g>`s`7(: x'Q EUKhZ$YqE0Fqeɠ!wiD54ԉ [@=A} j,n8- q՛j9PMO'Ui'ŚZÍ~0m  IbkV4b!6*=wHgɯO$) X݉m/JPZi~ĵ^AqXPGӨD'o{Oh'1)U%JO(q%vs\elHrlhIQ2.]zT;9!;α {fIp  u !YTtY~"^iGtBѭe,s>Yv͙.X_>QMlus6%9AR@Zi}>WV91ţa8-OϹ:HH n\<꿌>j~O[#O"(S>e.d" 9%(9G'R&6B5 ʵ HJVU51TE&crK>~ &԰K&7:^+OpvAUoYwRT;+w<G< F;30Ob)  tTH3 $^Lz`e0N\!Z >4 G?%1-Q2ꀥ&}KrJ0 BnbT}85=< \Is0T^_ʷաQ?aa)DEu?J߃ (oA%m h2tDVij(_cgR m7$Y_өOIHUaաIs.iIju5n4V|j48O6׬z#zP;]pt(g)q!kmVL $ǁR p`Z ؏^`=Sd(H$[b<&ɑU.='"Z1jsP̕OdqGbOǒi/11e`svbúbʦCr3Wm -d5ҢR ?8:j3%xec#F/y`7 u u/<8DESB]?sSS ډLyN\JkJ ͤZqz;,%x,VnR+$>bR`J_n"C~"X7.xtC1e&v* nL#C5TJ9J1X@KXyxo'1U[NMtJn5,ΠJxNCsA0K8^wd^踄!Y͞q.Ӱ8n vJr.QJPԯ>2N1.i8}ɏܧ;#ǵw0.:qLmqjgQC "(8W+̆,; 9:x_3N"DzQIߠ3]hk ۊL~R+ iOf,o(A4*aHPY'v!}wDހW2HE+@ E9~tR֐HX(OE LMacH owr4 ߖ[46~tTv2r=%x:'l͉5_/NXԴ0O(W c`Uݯ.V;T%.WaaNT?7JH:6`:87ȫ36B ] 8a,W  R; ų*ɡH=I\W L[G>bKj9~ v'x}2Ԇ0 >?ߪNuCWM ]@MwA++Tu>Du:ƼDڕ̺Ζ%#hC`ju`>lPl#țW/Lj櫦=+W‰/IHQl*9Q{uSoP~bȖwB[!u}IB5lŴLRcA:7 LCVȆShC#݇R,)lC]6b*RXkR|w;Q|  9TU9'P]axnImBۨdqNPX 6],ZѺLZ1bD#&| 'r|)'+N|{i' 23DI> +1w͕͗$率E?IEg&北'dJp阕‹SMߖr3zJN- *y^JQ)_JRQTT|D٩*MVΙ[ƄY)+ kV$[V ޜ«_J]/'}/}r@Y),X$x|,S,f("s~/'?0x)ϑ֒>r"ϗk#魱‚ޜ"rX5i.+Kt?ZLvY]Kg'?|8oKڌԗأ_6n̞ش#8_=^N)N^JM-ldæ $T'N9ݤYi1 S11La%ǜ{7wSdNϓ$s}FLW%#.Ud Ѿ-]6%_S 3eB7ifc;3q&@}%Mɳ '{(faH#ի9N+]Ԝd9O9L1ӏ4trA3M(ajO;A" 7w+66A&俟A\76zPRTaZ)g&pfV~}|Sn0o^j@yY l- \Jٌ* hQedZɽO;E^Nn6~<:FXw'pӮgFC3;G03zG< fO aU=$EB4 $YKB3'o&as:㌞aFW 3^+a|dW/vF{%d;L8{C0`L G}&=O 7x^.JnzcUzD{N$Ȍyw"6pj'(Α'Owg }t ~F K;Q<(b9QpS)\eΞ. /agęMO۽ПBPٟߣ騩.ZӟݩBrP<[~csvpS߳Bw ݹdwĢ^W~[w?^\24V2Gˎ)t9IHP YҔ#>V4^$u䡻ʮTd eLW'CM L&cuѢdliQ8%:^Y݃$pCڎhzlAnFkYՙQr0=ԧ-V} 6WmE'^*I:nR4lu&O/b"Bvjey8-~~ޱ;oFORp:Ҵ,/tؽ[#-%et#ߴ.^ v$zNcLwT5QF j{{TV*3`WcbbŽvr?coY& n${n7wx2֯+W'_s@ ݑ|8ڹeLJ)]x0ajtR~%T3-S&X~9;XTT'93<JѐDU['Lƫo~# #J[TP|}D>vDu >(zFalϬ~WJDa{SJ#7[θ *͵mDK3@wpO&$8 ry84:z&=soHdп.j'5Xa8S ɩ~=]$f+ȄmB_ޗ#k]v%tj"kwސ/^q裉duBt}{Ar/pr.q X X X zuoeոðd;Wvwo:AYYwpc\&y筬|W MS-Q7^w7.LPkFG=m<Q4CslT{'W$?bhw$ckxbJLHYέTE𭻊"b"v"gG6:Qk TAyI:aQ  "n:%EMl_Kt'1}oO8;{V{BKaQ䮎% A]jHބOn?e > ͤ;o7Z!loqVv l N,+džaS[Zy:yHhgAZ)S@(#!(ާ,rp>d$/U9MS^? %eck}à J͝9$YT D :gn|sm&fdJmցW'iMlEWlֺj_"vӖEGm"jMh _AM M§ژ2-e_*mB^Th.람˴%VN;?r)J?5PωW/c87>8E7XRt"Hģ}L]( 9-ٷpMԸz~^͢wf;3 m>jQ<=VNޞ CΜQtXwd R+i*vؠqlMjj=.Ռò8zQ q\(D.م5ʪUd!pB^ t @TJRyIx>EyX;XFeJiYNd*׈q[q2ZA.rI9aCl#zסZ[РX . rpIYh(֘ ?5A((c75 {eF$ 9uѡ sKȕM[ی;j}RXe/)K`jSMQ}6)|߰R.(VKO~y FU` #xTMf {:XtXfx% bR;U(1mj7дO:ĒmL*Η~XeNSQ:E??Q"&SbqҌHP]uR prjmĹ4ZKyRW,@47A ([ì~3xNز1Lа5!8GEiAZ35l׆S1laKR% QcIEYQG`RUoz K óЎHߢ D]"Uan'qU!k]fQЦ\n[l0HZyDQx;Z%U8MN C>RZՀ,Գ+}k{m`׻cChq55ӐV.2 OaKVg>jE.m.sGK/ +#Sh ;@My_0W[mn4@T{c]>ζM2a^<4*xX>Tg' n)N iM\x"ODnYzu9e,Pr ٛ('N5дDX炋?V_Y[5\STej 5hϖAމ)bu.^`VpW7:=Rsh)q{(Y<^aos%VxU:䑽n1b ^.q? jƻyd8q, r")KWjx^s>Կ7Y٠Z6z \(MPlM%XX.`EJQ/`Nɨ"v(l6

谁能给我讲一下伽利略相对性原理和爱因斯坦相对性原理,还有非惯性系和惯性力的关系!
谁能给我讲一下伽利略相对性原理和爱因斯坦相对性原理,还有非惯性系和惯性力的关系!

谁能给我讲一下伽利略相对性原理和爱因斯坦相对性原理,还有非惯性系和惯性力的关系!
在发现惯性定律的基础上,伽利略提出了相对性原理:力学规律在所有惯性坐标系中是等价的.力学过程对于静止的惯性系和运动的惯性系是完全相同的.换句话说,在一系统内部所作任何力学的实验都不能够决定一惯性系统是在静止状态还是在作等速直线运动.相对性原理是伽利略为了答复地心说对哥白尼体系的责难而提出的.这个原理的意义远不止此,它第一次提出惯性参照系的概念,这一原理被爱因斯坦称为伽利略相对性原理,是狭义相对论的先导 伽利略相对性原理:
一切彼此做匀速直线运动的惯性系,对于描写机械运动的力学规律来说是完全等价的.并不存在一个比其它惯性系更为优越的惯性系.在一个惯性系内部所作的任何力学实验都不能够确定这一惯性系本身是在静止状态,还是在作匀速直线运动.
也就是说,在超音速飞机内发出的声音,相对飞机是声速,相对地面是飞机速度加声速.在接近光速的火箭内发出的光,相对火箭还是光速,相对地面是火箭速度加光速.而在飞机外面,声速相对空气是声速,在火箭外面,光速相对空气是光速,一切取决于介质的运动状态,这才是波的特性.爱因斯坦相对论的论述,没有区分这两种情况,而总是将其中一种,扣在伽利略头上,这是对伽利略的污蔑,尽管伽利略没有提供这种情况下的结果,但伽利略也从来没有同意过任何人可以不理解伽利略相对性原理,而乱用公式.
早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场.这种事可能发生吗?
与此相联系,他非常想探讨与光波有关的所谓以太的问题.以太这个名词源于希腊,用以代表组成天上物体的基本元素.17世纪,笛卡尔首次将它引入科学,作为传播光的媒质.其后,惠更斯进一步发展了以太学说,认为荷载光波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的物质中.与惠更斯的看法不同,牛顿提出了光的微粒说.牛顿认为,发光体发射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉.18世纪牛顿的微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学说也因此大大发展.当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太.与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来.以太不仅是光波的载体,也成了电磁场的载体.直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太.
但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性原理不一致.关于相对性原理的思想,早在伽利略和牛顿时期就已经有了.电磁学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却遇到了困难.按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一个恒量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽车,一辆向你驶近,一辆驶离.你看到前一辆车的灯光向你靠近,后一辆车的灯光远离.按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不起作用.但根据伽利略理论,这两项的测量结果不同.向你驶来的车将发出的光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=光速-车速.麦克斯韦与伽利略关于速度的说法明显相悖.我们如何解决这一分歧呢?
19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机.海王星的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显示出一种形式上的完整,并被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”.在人们的心目中,古典物理学已经达到了近乎完美的程度.德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了.”
爱因斯坦似乎就是那个将构建崭新的物理学大厦的人.在伯尔尼专利局的日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并形成了自己独特的见解.在十年的探索过程中,爱因斯坦认真研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学.爱因斯坦坚信电磁理论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存在.他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的.经过研究爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦兹理论中已经没有实际意义.于是他想到:以及绝对参照系是必要的吗?电磁场一定要有荷载物吗?
爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性.相对性原理已经在力学中被广泛证明,但在电动力学中却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑.他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有同样的形式,但在这里出现了光速的问题.光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题.当时的物理学家一般都相信以太,也就是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响.19世纪末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因斯坦留下了深刻的印象.1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久.突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题.第二天,他又来到贝索家,说:谢谢你,我的问题解决了.原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系.他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前.
1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表.这篇论文是关于狭义相对论的第一篇文章,它包含了狭义相对论的基本思想和基本内容.狭义相对论所根据的是两条原理:相对性原理和光速不变原理.爱因斯坦解决问题的出发点,是他坚信相对性原理.伽利略最早阐明过相对性原理的思想,但他没有对时间和空间给出过明确的定义.牛顿建立力学体系时也讲了相对性思想,但又定义了绝对空间、绝对时间和绝对运动,在这个问题上他是矛盾的.而爱因斯坦大大发展了相对性原理,在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的时间,所有时间和空间都是和运动的物体联系在一起的.对于任何一个参照系和坐标系,都只有属于这个参照系和坐标系的空间和时间.对于一切惯性系,运用该参照系的空间和时间所表达的物理规律,它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理.在这篇文章中,爱因斯坦没有多讨论将光速不变作为基本原理的根据,他提出光速不变是一个大胆的假设,是从电磁理论和相对性原理的要求而提出来的.这篇文章是爱因斯坦多年来思考以太与电动力学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太漂流是不存在的.
什么是同时性的相对性?不同地方的两个事件我们何以知道它是同时发生的呢?一般来说,我们会通过信号来确认.为了得知异地事件的同时性我们就得知道信号的传递速度,但如何没出这一速度呢?我们必须测出两地的空间距离以及信号传递所需的时间,空间距离的测量很简单,麻烦在于测量时间,我们必须假定两地各有一只已经对好了的钟,从两个钟的读数可以知道信号传播的时间.但我们如何知道异地的钟对好了呢?答案是还需要一种信号.这个信号能否将钟对好?如果按照先前的思路,它又需要一种新信号,这样无穷后退,异地的同时性实际上无法确认.不过有一点是明确的,同时性必与一种信号相联系,否则我们说这两件事同时发生是没有意义的.
光信号可能是用来对时钟最合适的信号,但光速不是无限大,这样就产生一个新奇的结论,对于静止的观察者同时的两件事,对于运动的观察者就不是同时的.我们设想一个高速运行的列车,它的速度接近光速.列车通过站台时,甲站在站台上,有两道闪电在甲眼前闪过,一道在火车前端,一道在后端,并在火车两端及平台的相应部位留下痕迹,通过测量,甲与列车两端的间距相等,得出的结论是,甲是同时看到两道闪电的.因此对甲来说,收到的两个光信号在同一时间间隔内传播同样的距离,并同时到达他所在位置,这两起事件必然在同一时间发生,它们是同时的.但对于在列车内部正中央的乙,情况则不同,因为乙与高速运行的列车一同运动,因此他会先截取向着他传播的前端信号,然后收到从后端传来的光信号.对乙来说,这两起事件是不同时的.也就是说,同时性不是绝对的,而取决于观察者的运动状态.这一结论否定了牛顿力学中引以为基础的绝对时间和绝对空间框架.
相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度.由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀.但由于日常生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应.
爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大.他并且给出了著名的质能关系式:E=mc2,质能关系式对后来发展的原子能事业起到了指导作用.
在惯性系中没有所谓的惯性力!在非惯性系中做受力分析时只用在惯性系的物体上加一个非惯性系相对惯性系的加速度!
早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场.这种事可能发生吗?
与此相联系,他非常想探讨与光波有关的所谓以太的问题.以太这个名词源于希腊,用以代表组成天上物体的基本元素.17世纪,笛卡尔首次将它引入科学,作为传播光的媒质.其后,惠更斯进一步发展了以太学说,认为荷载光波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的物质中.与惠更斯的看法不同,牛顿提出了光的微粒说.牛顿认为,发光体发射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉.18世纪牛顿的微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学说也因此大大发展.当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太.与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来.以太不仅是光波的载体,也成了电磁场的载体.直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太.
但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性原理不一致.关于相对性原理的思想,早在伽利略和牛顿时期就已经有了.电磁学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却遇到了困难.按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一个恒量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽车,一辆向你驶近,一辆驶离.你看到前一辆车的灯光向你靠近,后一辆车的灯光远离.按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不起作用.但根据伽利略理论,这两项的测量结果不同.向你驶来的车将发出的光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=光速-车速.麦克斯韦与伽利略关于速度的说法明显相悖.我们如何解决这一分歧呢?
19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机.海王星的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显示出一种形式上的完整,并被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”.在人们的心目中,古典物理学已经达到了近乎完美的程度.德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了.”
爱因斯坦似乎就是那个将构建崭新的物理学大厦的人.在伯尔尼专利局的日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并形成了自己独特的见解.在十年的探索过程中,爱因斯坦认真研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学.爱因斯坦坚信电磁理论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存在.他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的.经过研究爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦兹理论中已经没有实际意义.于是他想到:以及绝对参照系是必要的吗?电磁场一定要有荷载物吗?
爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性.相对性原理已经在力学中被广泛证明,但在电动力学中却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑.他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有同样的形式,但在这里出现了光速的问题.光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题.当时的物理学家一般都相信以太,也就是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响.19世纪末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因斯坦留下了深刻的印象.1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久.突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题.第二天,他又来到贝索家,说:谢谢你,我的问题解决了.原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系.他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前.
1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表.这篇论文是关于狭义相对论的第一篇文章,它包含了狭义相对论的基本思想和基本内容.狭义相对论所根据的是两条原理:相对性原理和光速不变原理.爱因斯坦解决问题的出发点,是他坚信相对性原理.伽利略最早阐明过相对性原理的思想,但他没有对时间和空间给出过明确的定义.牛顿建立力学体系时也讲了相对性思想,但又定义了绝对空间、绝对时间和绝对运动,在这个问题上他是矛盾的.而爱因斯坦大大发展了相对性原理,在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的时间,所有时间和空间都是和运动的物体联系在一起的.对于任何一个参照系和坐标系,都只有属于这个参照系和坐标系的空间和时间.对于一切惯性系,运用该参照系的空间和时间所表达的物规律,它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理.在这篇文章中,爱因斯坦没有多讨论将光速不变作为基本原理的根据,他提出光速不变是一个大胆的假设,是从电磁理论和相对性原理的要求而提出来的.这篇文章是爱因斯坦多年来思考以太与电动力学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太漂流是不存在的.
什么是同时性的相对性?不同地方的两个事件我们何以知道它是同时发生的呢?一般来说,我们会通过信号来确认.为了得知异地事件的同时性我们就得知道信号的传递速度,但如何没出这一速度呢?我们必须测出两地的空间距离以及信号传递所需的时间,空间距离的测量很简单,麻烦在于测量时间,我们必须假定两地各有一只已经对好了的钟,从两个钟的读数可以知道信号传播的时间.但我们如何知道异地的钟对好了呢?答案是还需要一种信号.这个信号能否将钟对好?如果按照先前的思路,它又需要一种新信号,这样无穷后退,异地的同时性实际上无法确认.不过有一点是明确的,同时性必与一种信号相联系,否则我们说这两件事同时发生是没有意义的.
光信号可能是用来对时钟最合适的信号,但光速不是无限大,这样就产生一个新奇的结论,对于静止的观察者同时的两件事,对于运动的观察者就不是同时的.我们设想一个高速运行的列车,它的速度接近光速.列车通过站台时,甲站在站台上,有两道闪电在甲眼前闪过,一道在火车前端,一道在后端,并在火车两端及平台的相应部位留下痕迹,通过测量,甲与列车两端的间距相等,得出的结论是,甲是同时看到两道闪电的.因此对甲来说,收到的两个光信号在同一时间间隔内传播同样的距离,并同时到达他所在位置,这两起事件必然在同一时间发生,它们是同时的.但对于在列车内部正中央的乙,情况则不同,因为乙与高速运行的列车一同运动,因此他会先截取向着他传播的前端信号,然后收到从后端传来的光信号.对乙来说,这两起事件是不同时的.也就是说,同时性不是绝对的,而取决于观察者的运动状态.这一结论否定了牛顿力学中引以为基础的绝对时间和绝对空间框架.
相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度.由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀.但由于日常生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应.
爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大.他并且给出了著名的质能关系式:E=mc2,质能关系式对后来发展的原子能事业起到了指导作用.
在惯性系中没有所谓的惯性力!在非惯性系中做受力分析时只用在惯性系的物体上加一个非惯性系相对惯性系的加速度!
早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场.这种事可能发生吗?
与此相联系,他非常想探讨与光波有关的所谓以太的问题.以太这个名词源于希腊,用以代表组成天上物体的基本元素.17世纪,笛卡尔首次将它引入科学,作为传播光的媒质.其后,惠更斯进一步发展了以太学说,认为荷载光波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的物质中.与惠更斯的看法不同,牛顿提出了光的微粒说.牛顿认为,发光体发射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉.18世纪牛顿的微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学说也因此大大发展.当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太.与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来.以太不仅是光波的载体,也成了电磁场的载体.直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太.
但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性原理不一致.关于相对性原理的思想,早在伽利略和牛顿时期就已经有了.电磁学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却遇到了困难.按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一个恒量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽车,一辆向你驶近,一辆驶离.你看到前一辆车的灯光向你靠近,后一辆车的灯光远离.按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不起作用.但根据伽利略理论,这两项的测量结果不同.向你驶来的车将发出的光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=光速-车速.麦克斯韦与伽利略关于速度的说法明显相悖.我们如何解决这一分歧呢?
19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机.海王星的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显示出一种形式上的完整,并被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”.在人们的心目中,古典物理学已经达到了近乎完美的程度.德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了.”
爱因斯坦似乎就是那个将构建崭新的物理学大厦的人.在伯尔尼专利局的日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并形成了自己独特的见解.在十年的探索过程中,爱因斯坦认真研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学.爱因斯坦坚信电磁理论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存在.他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的.经过研究爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦兹理论中已经没有实际意义.于是他想到:以及绝对参照系是必要的吗?电磁场一定要有荷载物吗?
爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性.相对性原理已经在力学中被广泛证明,但在电动力学中却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑.他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有同样的形式,但在这里出现了光速的问题.光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题.当时的物理学家一般都相信以太,也就是相信存在着绝对
1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9发点,是他坚信相对性个参照系它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理.在这篇文章中,爱因斯坦

伽利略相对性原理:
一切彼此做匀速直线运动的惯性系,对于描写机械运动的力学规律来说是完全等价的。并不存在一个比其它惯性系更为优越的惯性系。在一个惯性系内部所作的任何力学实验都不能够确定这一惯性系本身是在静止状态,还是在作匀速直线运动。
也就是说,在超音速飞机内发出的声音,相对飞机是声速,相对地面是飞机速度加声速。在接近光速的火箭内发出的光,相对火箭还是光速,相对地面是火箭...

全部展开

伽利略相对性原理:
一切彼此做匀速直线运动的惯性系,对于描写机械运动的力学规律来说是完全等价的。并不存在一个比其它惯性系更为优越的惯性系。在一个惯性系内部所作的任何力学实验都不能够确定这一惯性系本身是在静止状态,还是在作匀速直线运动。
也就是说,在超音速飞机内发出的声音,相对飞机是声速,相对地面是飞机速度加声速。在接近光速的火箭内发出的光,相对火箭还是光速,相对地面是火箭速度加光速。而在飞机外面,声速相对空气是声速,在火箭外面,光速相对空气是光速,一切取决于介质的运动状态,这才是波的特性。爱因斯坦相对论的论述,没有区分这两种情况,而总是将其中一种,扣在伽利略头上,这是对伽利略的污蔑,尽管伽利略没有提供这种情况下的结果,但伽利略也从来没有同意过任何人可以不理解伽利略相对性原理,而乱用公式。
早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场。这种事可能发生吗?
与此相联系,他非常想探讨与光波有关的所谓以太的问题。以太这个名词源于希腊,用以代表组成天上物体的基本元素。17世纪,笛卡尔首次将它引入科学,作为传播光的媒质。其后,惠更斯进一步发展了以太学说,认为荷载光波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的物质中。与惠更斯的看法不同,牛顿提出了光的微粒说。牛顿认为,发光体发射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉。18世纪牛顿的微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学说也因此大大发展。当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太。与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来。以太不仅是光波的载体,也成了电磁场的载体。直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太。
但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性原理不一致。关于相对性原理的思想,早在伽利略和牛顿时期就已经有了。电磁学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却遇到了困难。按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一个恒量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽车,一辆向你驶近,一辆驶离。你看到前一辆车的灯光向你靠近,后一辆车的灯光远离。按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不起作用。但根据伽利略理论,这两项的测量结果不同。向你驶来的车将发出的光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=光速-车速。麦克斯韦与伽利略关于速度的说法明显相悖。我们如何解决这一分歧呢?
19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机。海王星的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显示出一种形式上的完整,并被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”。在人们的心目中,古典物理学已经达到了近乎完美的程度。德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了。”
爱因斯坦似乎就是那个将构建崭新的物理学大厦的人。在伯尔尼专利局的日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并形成了自己独特的见解。在十年的探索过程中,爱因斯坦认真研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学。爱因斯坦坚信电磁理论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存在。他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的。经过研究爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦兹理论中已经没有实际意义。于是他想到:以及绝对参照系是必要的吗?电磁场一定要有荷载物吗?
爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性。相对性原理已经在力学中被广泛证明,但在电动力学中却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑。他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有同样的形式,但在这里出现了光速的问题。光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题。当时的物理学家一般都相信以太,也就是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响。19世纪末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因斯坦留下了深刻的印象。1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。
1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含了狭义相对论的基本思想和基本内容。狭义相对论所根据的是两条原理:相对性原理和光速不变原理。爱因斯坦解决问题的出发点,是他坚信相对性原理。伽利略最早阐明过相对性原理的思想,但他没有对时间和空间给出过明确的定义。牛顿建立力学体系时也讲了相对性思想,但又定义了绝对空间、绝对时间和绝对运动,在这个问题上他是矛盾的。而爱因斯坦大大发展了相对性原理,在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的时间,所有时间和空间都是和运动的物体联系在一起的。对于任何一个参照系和坐标系,都只有属于这个参照系和坐标系的空间和时间。对于一切惯性系,运用该参照系的空间和时间所表达的物理规律,它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理。在这篇文章中,爱因斯坦没有多讨论将光速不变作为基本原理的根据,他提出光速不变是一个大胆的假设,是从电磁理论和相对性原理的要求而提出来的。这篇文章是爱因斯坦多年来思考以太与电动力学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太漂流是不存在的。
什么是同时性的相对性?不同地方的两个事件我们何以知道它是同时发生的呢?一般来说,我们会通过信号来确认。为了得知异地事件的同时性我们就得知道信号的传递速度,但如何没出这一速度呢?我们必须测出两地的空间距离以及信号传递所需的时间,空间距离的测量很简单,麻烦在于测量时间,我们必须假定两地各有一只已经对好了的钟,从两个钟的读数可以知道信号传播的时间。但我们如何知道异地的钟对好了呢?答案是还需要一种信号。这个信号能否将钟对好?如果按照先前的思路,它又需要一种新信号,这样无穷后退,异地的同时性实际上无法确认。不过有一点是明确的,同时性必与一种信号相联系,否则我们说这两件事同时发生是没有意义的。
光信号可能是用来对时钟最合适的信号,但光速不是无限大,这样就产生一个新奇的结论,对于静止的观察者同时的两件事,对于运动的观察者就不是同时的。我们设想一个高速运行的列车,它的速度接近光速。列车通过站台时,甲站在站台上,有两道闪电在甲眼前闪过,一道在火车前端,一道在后端,并在火车两端及平台的相应部位留下痕迹,通过测量,甲与列车两端的间距相等,得出的结论是,甲是同时看到两道闪电的。因此对甲来说,收到的两个光信号在同一时间间隔内传播同样的距离,并同时到达他所在位置,这两起事件必然在同一时间发生,它们是同时的。但对于在列车内部正中央的乙,情况则不同,因为乙与高速运行的列车一同运动,因此他会先截取向着他传播的前端信号,然后收到从后端传来的光信号。对乙来说,这两起事件是不同时的。也就是说,同时性不是绝对的,而取决于观察者的运动状态。这一结论否定了牛顿力学中引以为基础的绝对时间和绝对空间框架。
相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度。由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀。但由于日常生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应。
爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大。他并且给出了著名的质能关系式:E=mc2,质能关系式对后来发展的原子能事业起到了指导作用。
在惯性系中没有所谓的惯性力!在非惯性系中做受力分析时只用在惯性系的物体上加一个非惯性系相对惯性系的加速度!

收起

伽利略提出了相对性原理:力学规律在所有惯性坐标系中是等价的。力学过程对于静止的惯性系和运动的惯性系是完全相同的。换句话说,在一系统内部所作任何力学的实验都不能够决定一惯性系统是在静止状态还是在作等速直线运动。伽利略在《对话》中写道:当你在密闭的运动着的船舱里观察力学过程时,“只要运动是匀速的,决不忽左忽右摆动,你将发现,所有上述现象丝毫没有变化,你也无法从其中任何一个现象来确定,船是在运动还是停着...

全部展开

伽利略提出了相对性原理:力学规律在所有惯性坐标系中是等价的。力学过程对于静止的惯性系和运动的惯性系是完全相同的。换句话说,在一系统内部所作任何力学的实验都不能够决定一惯性系统是在静止状态还是在作等速直线运动。伽利略在《对话》中写道:当你在密闭的运动着的船舱里观察力学过程时,“只要运动是匀速的,决不忽左忽右摆动,你将发现,所有上述现象丝毫没有变化,你也无法从其中任何一个现象来确定,船是在运动还是停着不动。即使船运动得相当快,在跳跃时,你将和以前一样,在船底板上跳过相同的距离,你跳向船尾也不会比跳向船头来得远,虽然你跳到空中时,脚下的船底板向着你跳的相反方向移动。你把不论什么东西扔给你的同伴时,不论他是在船头还是在船尾,只要你自己站在对面,你也并不需要用更多的力。水滴将象先前一样,垂直滴进下面的罐子,一滴也不会滴向船尾,虽然水滴在空中时,船已行使了许多拃。鱼在水中游向水碗前部所用的力,不比游向水碗后部来得大;它们一样悠闲地游向放在水碗边缘任何地方的食饵。最后,蝴蝶和苍蝇将继续随便地到处飞行,它们也决不会向船尾集中,并不因为它们可能长时间留在空中,脱离了船的运动,为赶上船的运动显出累的样子。如果点香冒烟,则将看到烟象一朵云一样向上升起,不向任何一边移动。所有这些一致的现象,其原因在于船的运动是船上一切事物所共有的,也是空气所共有的。”相对性原理是伽利略为了答复地心说对哥白尼体系的责难而提出的。这个原理的意义远不止此,它第一次提出惯性参照系的概念,这一原理被爱因斯坦称为伽利略相对性原理,是狭义相对论的先

收起

在发现惯性定律的基础上,伽利略提出了相对性原理:力学规律在所有惯性坐标系中是等价的。力学过程对于静止的惯性系和运动的惯性系是完全相同的。换句话说,在一系统内部所作任何力学的实验都不能够决定一惯性系统是在静止状态还是在作等速直线运动。伽利略在《对话》中写道:当你在密闭的运动着的船舱里观察力学过程时,“只要运动是匀速的,决不忽左忽右摆动,你将发现,所有上述现象丝毫没有变化,你也无法从其中任何一个现象来...

全部展开

在发现惯性定律的基础上,伽利略提出了相对性原理:力学规律在所有惯性坐标系中是等价的。力学过程对于静止的惯性系和运动的惯性系是完全相同的。换句话说,在一系统内部所作任何力学的实验都不能够决定一惯性系统是在静止状态还是在作等速直线运动。伽利略在《对话》中写道:当你在密闭的运动着的船舱里观察力学过程时,“只要运动是匀速的,决不忽左忽右摆动,你将发现,所有上述现象丝毫没有变化,你也无法从其中任何一个现象来确定,船是在运动还是停着不动。即使船运动得相当快,在跳跃时,你将和以前一样,在船底板上跳过相同的距离,你跳向船尾也不会比跳向船头来得远,虽然你跳到空中时,脚下的船底板向着你跳的相反方向移动。你把不论什么东西扔给你的同伴时,不论他是在船头还是在船尾,只要你自己站在对面,你也并不需要用更多的力。水滴将象先前一样,垂直滴进下面的罐子,一滴也不会滴向船尾,虽然水滴在空中时,船已行使了许多拃。鱼在水中游向水碗前部所用的力,不比游向水碗后部来得大;它们一样悠闲地游向放在水碗边缘任何地方的食饵。最后,蝴蝶和苍蝇将继续随便地到处飞行,它们也决不会向船尾集中,并不因为它们可能长时间留在空中,脱离了船的运动,为赶上船的运动显出累的样子。如果点香冒烟,则将看到烟象一朵云一样向上升起,不向任何一边移动。所有这些一致的现象,其原因在于船的运动是船上一切事物所共有的,也是空气所共有的。”相对性原理是伽利略为了答复地心说对哥白尼体系的责难而提出的。这个原理的意义远不止此,它第一次提出惯性参照系的概念,这一原理被爱因斯坦称为伽利略相对性原理,是狭义相对论的先导

收起

纵观物理学发展的历史长河,我们感喟人类认识自然规律之曲折、艰辛、漫长;惊叹那些在黑夜中摸索的物理学巨匠们的顽强、睿智、杰出.从古代的亚里士多德、阿基m德到物理学新时代的伽利略、牛顿到近代物理学的奠基者爱因斯坦、玻尔……,一代代的物理学家所代表的人类智力的自由创造,使我们关于物理实在的图景的描绘愈来愈接近客观真理,使物理学大厦逐步地趋向完美.回顾物理学的发展历史,重温物理学家曾经经历的种种挫折与成功...

全部展开

纵观物理学发展的历史长河,我们感喟人类认识自然规律之曲折、艰辛、漫长;惊叹那些在黑夜中摸索的物理学巨匠们的顽强、睿智、杰出.从古代的亚里士多德、阿基m德到物理学新时代的伽利略、牛顿到近代物理学的奠基者爱因斯坦、玻尔……,一代代的物理学家所代表的人类智力的自由创造,使我们关于物理实在的图景的描绘愈来愈接近客观真理,使物理学大厦逐步地趋向完美.回顾物理学的发展历史,重温物理学家曾经经历的种种挫折与成功,犹如实施一种智力移植;通过挖掘革命性、科学性理论的创造性思路或者伟大科学家从事科学创造的思路,使我们对物理世界的认识更科学、合理,更富于创见,更机智敏捷.如借鉴历史的明镜.依据古人曾经产生过的错误,预料今天初学者脑子里会出现的影像,未雨绸缪、少走弯路.让我们以亚里士多德与伽利略为例去寻求启迪吧.
我们从教科书上曾经结识过这两位伟大学者.在落体运动法则问题上.在力与运动的关系问题上,这两位时隔两千年的学者的观点的确是相去甚远.在十六世纪以前,亚里士多德在物理学界享有至高无上的威望,致使人们的思维、观察和知识都紧紧束缚在亚氏所写下的那些东西上.它使人们相信地球是宇宙的中心;轻物体的自然运动是向上的;重物体的自然运动是向下的,越重的物体下落越快;天体物质的自然运动则是围绕宇宙中心旋转的.这些自然运动无须外力作用.非自然运动的那些物体都是由于有外力迫使.力是维持物体非自然运动的原因;马车沿着马路行驶当然得由马来拉动;推一个物体的力不再去推它,原本运动着的物体自然便停下来……,亚里士多德的观点与最简单的经验事实那么吻合、与人们对事物的理解程度那么相符,所以曾一代一代地被奉若神明,视作人类知识的颠峰而保持了千百年,大自然的真谛隐匿在黑夜中,谬误使人们困惑、迷茫.人类在混沌中摸索…….伽利略伟大的工作,从根本上改变了人们关于运动问题的概念,使物理学进入了新时期.伽利略运用科学的研究方法,在几十年时间里研究落体运动,研究力与运动的关系,得出了与亚里士多德截然不同的结论,现在我们知道,任何物体总保持静止或匀速直线运动状态不变,直至有外力迫使物体改变这种状态为止,匀速直线运动或静止才是物体的自然运动状态,力则是导致物体改变自然运动状态的原因;自由下落的物体“下落速度与下落时间成正比”.伽利略是划时代的物理学家,正如爱因斯坦所言.伽利略的发现以及他所应用的科学的推理方法是人类思想史上最伟大的成就之一,而且标志着物理学的真正开端.
物理教科书上,亚里士多德给同学们的形象不妙、他老是出锗,老是作出一些轻率的结论.同学们觉得亚氏实在太不高明而伽利略则比他伟大于百倍.事实上,亚里士多德是古代一位伟大的学者,一位百科全书式的大学问家,他有着成就事业的理性方法,又有几乎无所不及的思想成果,他在哲学、逻辑学方面的成就至今还被应用着,不过他在物理学中却的确是错误百出并且谬种流传,整整贻误物理学二十个世纪.亚里士多德的悲哀不在于头脑也不全在于时代,而在于研究方法不当.亚里士多德的物理研究方法有什么特点呢?或许可以用“观察加直觉”来概括,亚里士多德观察了众多的自然现象:火焰向上窜,石头往下落、马车要马拉着跑、尖利的声音传得远……,于是便依赖于直觉推理得出一系列直觉结论.固然,观察与直觉对物理研究是至关重要的.详实的观察与良好的直觉往往导致伟大的发现,观察使人脑累积事物的形象,形成一种潜知,直觉的想象、鉴别与启发便是这种潜知的信息外传.阿基m德巧解王冠之谜发现浮力规律、牛顿由落地苹果而及月亮乃至天地万物间的引力,就是亚里士多德本人也曾从观察月食现象而正确判断地球是圆球形的.然而,物理学更是一门以实验为基础的科学,所以根据直接观察所得出的直觉的结论不是常常可靠的,它们有时会将人们引入歧途,将“观察加直觉”作为物理研究的基本方法.正是亚里士多德物理学的失败之所在.
伽利略是第一位创造通过实验检验理论推导的科学研究方法的科学家.他崇尚“实验加推理”,他拒绝听信任何未经实验的科学思想,哪怕那是来自于教堂或权威.伽利略用尽毕生的精力探索落体运动的规律,他首先通过落体佯谬的思想实验.否定亚里士多德的重物下落快的结论.通过观察棉花、羽毛等在空气中落下,伽利略曾经提出过落体速度与密度成正比例的法则,然而通过科学的推理.使伽利略认识了不易察觉的空气阻力,从而发现了自已最初的法则的错误,并猜想到在没有空气阻力的情况下,一切物体都在同样地增加着速度,为了建立真正的落体法则,伽利略仔细地实验研究了摆的运动和小球在斜面上的运动,严格地定义了匀变速运动;设计出精密的时间测量方法;尽量地消除各种阻力的影响;运用数学工具;……最终找到了物体下落速度与下落时间成正比的正确法则.伽利略的贡献不只是建立了一个新的法则,而且将物理学研究推向正确的轨道.从此开始了物理学的突飞猛进.
亚里士多德与伽利略的故事告诉我们,知识就是力量,而能力与方法比知识更有力量.我们每个人都同样地拥有一个健全的大脑,我们每个人都应该可以象伽利略那样去思索.重要的是学会认识世界的方法和具备进行科学研究的能力.如若我们能从亚里士多德和伽利略以及其它各位伟大学者的失败与成功中寻求启发和借鉴.我们也将会拥有一颗杰出的闪烁出智慧之光的大脑,去容纳经典的与现代的物理知识.去面对已知的与未知的物理世界.

收起