已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜已知中心在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A,B两点,D是AB的中点,若AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:27:22
已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜已知中心在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A,B两点,D是AB的中点,若AB
xTN@/<)){> TGbyP BCQ%HRb R͌;31i*UZ}}%h{V'9Jk䮿OvY .=ZgsZ_ݡe,=vHF$J݉LYk#ox),o$2 +WàkC ?Ym!8m3yd*l- ?Ywh㝙TXWe*Vv4'ǻ8]&42ic!-S$/@ l2mFe0(0 yx@ 齣:-dNh@ Ъp1106ԥ5fL.F65[ wb#zSUY!Ș1|S%U8t8th }/ZUz|FtAo;M8CНG r7O[mNoxȪDs2؃sN+dP i^I$6+riŔy\E Esok ~CBs]E`E(/^FimOl҉h

已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜已知中心在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A,B两点,D是AB的中点,若AB
已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜
已知中心在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A,B两点,D是AB的中点,若AB的绝对值=2√2,OD的斜率k=√2/2,求椭圆方程.

已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜已知中心在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A,B两点,D是AB的中点,若AB
设椭圆方程为:x^2/a^2+y^/b^2=1 设A点坐标为(x1,y1),B点坐标为(x2,y2)
将直线方程y=1-x 代入到椭圆方程得:
b^2x^2+a^2(1-x)^2=a^2b^2
(a^2+b^2)x^2-2a^2x+a^2-a^2b^2=0 (1)
则有:
x1+x2=2a^2/(a^2+b^2)
x1x2=(a^2-a^2b^2)/(a^2+b^2)
又因为:
y1=1-x1
y2=1-x2
则有:
y1+y2=2-(x1+x2)
y1-y2=x2-x1
AB的中点的坐标为((x1+x2)/2,(y1+y2)/2),O为原点,直线OD的斜率为:
k=[(y1+y2)/2-0]/[(x1+x2)/2-0]=(y1+y2)/(x1+x2)=√2/2
y1+y2=√2/2*(x1+x2)=2-(x1+x2) (将y1+y2=2-(x1+x2)代入)
(x1+x2)(1+√2/2)=2 x1+x2=4-2√2
|AB|=√[(x1-x2)^2+(y1-y2)^2] (将y1-y2=x2-x1代入)
=√2*√(x1-x2)^2=2√2
x1-x2=2或者x1-x2=-2
当x1-x2=2时,x1=3-√2 x2=1-√2
当x1-x2=-2时,x1=1-√2 x2=3-√2
所以方程(1)的两根为1-√2和3-√2,代入即可求出a,b,原理就是这样,具体结果你自己算,若又不懂,

设椭圆方程为:x^2/a^2+y^/b^2=1 设A点坐标为(x1,y1),B点坐标为(x2,y2)
将直线方程y=1-x 代入到椭圆方程得:
b^2x^2+a^2(1-x)^2=a^2b^2
(a^2+b^2)x^2-2a^2x+a^2-a^2b^2=0 (1)
则有:
x1+x2=2a^2/(a^2+b^2)
x1x2=(a^2-a^2b^2)...

全部展开

设椭圆方程为:x^2/a^2+y^/b^2=1 设A点坐标为(x1,y1),B点坐标为(x2,y2)
将直线方程y=1-x 代入到椭圆方程得:
b^2x^2+a^2(1-x)^2=a^2b^2
(a^2+b^2)x^2-2a^2x+a^2-a^2b^2=0 (1)
则有:
x1+x2=2a^2/(a^2+b^2)
x1x2=(a^2-a^2b^2)/(a^2+b^2)
又因为:
y1=1-x1
y2=1-x2
则有:
y1+y2=2-(x1+x2)
y1-y2=x2-x1
AB的中点的坐标为((x1+x2)/2,(y1+y2)/2),O为原点,直线OD的斜率为:
k=[(y1+y2)/2-0]/[(x1+x2)/2-0]=(y1+y2)/(x1+x2)=√2/2
y1+y2=√2/2*(x1+x2)=2-(x1+x2) (将y1+y2=2-(x1+x2)代入)
(x1+x2)(1+√2/2)=2 x1+x2=4-2√2
|AB|=√[(x1-x2)^2+(y1-y2)^2] (将y1-y2=x2-x1代入)
=√2*√(x1-x2)^2=2√2
x1-x2=2或者x1-x2=-2
当x1-x2=2时,x1=3-√2 x2=1-√2
当x1-x2=-2时,x1=1-√2 x2=3-√2

收起

已知中心在原点,焦点在坐标轴上的椭圆经过P(-3,0) Q(0,-2),求椭圆的标准方程,求椭圆的离心率 已知椭圆的中心在原点O 焦点在坐标轴上 直线y=x+1与该椭圆相交与P和Q且OP⊥OQ 绝对值PQ=2分之根号10 求椭圆的方程 已知椭圆的中心在原点O 焦点在坐标轴上 直线y=x+1与该椭圆相交与P和Q且OP⊥OQ 绝对值PQ=2分之根号10 求椭圆的方程 已知椭圆的中心在原点且过点P(3 ,2),焦点在坐标轴上,长轴长是短轴长的3倍,求该椭圆的方程 已知椭圆的中心在原点,焦点在坐标轴上,且过P1(根号6,1)和P2(-根号3,-根号2) 求椭圆方程 已知椭圆的中心在原点,焦点在坐标轴上,直线Y=X+1与该椭圆相交于P和Q,且OP⊥OQ,PQ=根号10/2,求椭圆的方程. 已知椭圆中心在原点,焦点在坐标轴上,直线 y = x + 1 与椭圆交于 P 和 Q 两点,且 OP ⊥ OQ ,PQ = 10 ,求椭圆的方程. 解析几何圆锥曲线已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=(根10)/2,求椭圆方程. 已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆交于P,Q两点,且OP⊥OQ,/PQ/=根号10/2,求这个椭圆方程. 已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆相交于点P和Q,且OP⊥OQ,|PQ|=√10/2,求椭圆方程 已知中心在原点,焦点在坐标轴上的椭圆经过点M(1,42 3 ),N(-32 2 ,2 ) ,求椭圆的离心率已知中心在原点,焦点在坐标轴上的椭圆经过点M(1,42 3 ),N(-32 2 ,2 ) ,(1)求椭圆的离心率 ;(2)在椭圆上是否存 已知椭圆C的中心为坐标原点,焦点在坐标轴上,且经过点M(4.1).N(2.2).求椭圆C的方程. 已知中心在坐标原点的椭圆经过直线x-2y-4=0与坐标轴的两个焦点,则该椭圆的离心率为? 已知中心为原点,对称轴为坐标轴的椭圆焦点在x轴上,离心率e=√2/2,直线x+y+1=0与椭圆交于PQ两点且OP⊥OQ,求椭圆方程 已知椭圆的中心在坐标原点,焦点在坐标轴上,直线y=x+1与该椭圆相交于P,Q两点,且OP⊥OQ,∣PQ∣=,求椭 中心在原点,焦点在坐标轴上,且过两点(4,3)(6,2)的椭圆的方程为 已知椭圆的中心在原点,对称轴在坐标轴上,两个焦点为F1(-1,0) F2...已知椭圆的中心在原点,对称轴在坐标轴上,两个焦点为F1(-1,0) F2(1,0)离心率e=√2/2 (1)求椭圆方程 已知椭圆的中心在原点,对称轴是坐标轴,直线Y=2X与椭圆在第一象限内的交点是M,M在X轴上的射影恰好是椭圆的右焦点F2,另一个焦点是F1,(1)求椭圆的离心率;(2)若向量MF1*向量MF2=2,求椭圆的