在平面直角坐标系中 矩形OACB的顶点O为坐标原点 顶点A B分别在X Y轴的正半轴 0A=3 OB=4 D为边OB的中点 若E为边OA上一个动点 当三角形COE的周长最小时 求E坐标
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:19:57
在平面直角坐标系中 矩形OACB的顶点O为坐标原点 顶点A B分别在X Y轴的正半轴 0A=3 OB=4 D为边OB的中点 若E为边OA上一个动点 当三角形COE的周长最小时 求E坐标
在平面直角坐标系中 矩形OACB的顶点O为坐标原点 顶点A B分别在X Y轴的正半轴 0A=3 OB=4 D为边OB的中点 若E为边OA上一个动点 当三角形COE的周长最小时 求E坐标
在平面直角坐标系中 矩形OACB的顶点O为坐标原点 顶点A B分别在X Y轴的正半轴 0A=3 OB=4 D为边OB的中点 若E为边OA上一个动点 当三角形COE的周长最小时 求E坐标
E点坐标(1,0)
点D坐标(2,0)要使周长最小,找D关于X轴的对称点M,
对称点M的坐标为(-2,0)用待定系数法求出CM的解析式Y=2X-2
当Y=0时,X=1 所以E点坐标为(1,0)
没有图啊
设点E的坐标为(x,0)则点F的坐标为(x+2,0),C为(0,根号7),D为(3/2,2分之根号7)边CD=根号下(3/2的平方+(2分之根号7)的平方)=2(其实D为矩形的中心)
边CE=根号下(x的平方+(根号7)的平方)
边DF=根号下((x+2-3/2)的平方+(2分之根号7)的平方)
边EF=2
以此建立四边形CDEF周长的方程
S=CD+CE+...
全部展开
设点E的坐标为(x,0)则点F的坐标为(x+2,0),C为(0,根号7),D为(3/2,2分之根号7)边CD=根号下(3/2的平方+(2分之根号7)的平方)=2(其实D为矩形的中心)
边CE=根号下(x的平方+(根号7)的平方)
边DF=根号下((x+2-3/2)的平方+(2分之根号7)的平方)
边EF=2
以此建立四边形CDEF周长的方程
S=CD+CE+DF+EF
=4+根号下((x的平方)+7)+根号下((x+1/2)的平方+7/4)
求方程的最小值得x的值为0
也就是说只有在点E和原点重合的时候周长才是最小,最小周长为8.06
收起