设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明: 2.若V1与V(-1)分别表示T
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:43:20
xRMN@
ζq(Kr p(-6TIiBC N!{xf*Ī+E73yMVIǂ'a%*CLGY{ZUGIh'ᅾfXz|d3I;#ʝ=EiA&:W7T2ҽj&~b._HF:zeUU%1e1&])3yIs8f;MD 8?w SVxic ŲY:Fq7_zٓs
z$jLA'; =b0n`k a.:ݟʣpE0asX;--?oVY_
设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明: 2.若V1与V(-1)分别表示T
设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;
设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明: 2.若V1与V(-1)分别表示T
设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明: 2.若V1与V(-1)分别表示T
第一问:设ξ是线性变换T的任一个特征向量,对应的特征值是λ,则有Tξ=λξ,两边左边用T作用,得T^2(ξ)=T(Tξ)=λTξ=λ^2ξ,而由已知,T^2=I,故λ^2ξ=ξ,因为ξ≠0 ==>λ^2=1 ==>λ=1或-1.由ξ的任意性知道,T的特征值只能是1或-1
第二问:题面没有看懂,是否完整?
希望我的回答对你有所帮助,祝你在数学上更上一层楼.)
设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明: 2.若V1与V(-1)分别表示T
设W为数域F上的n维线性空间V的子集合,若W中元素满足1、 若α,β∈W,则α+β∈W;2、 若α∈W,λ∈F,则λα∈W.则容易证明:W也构成数域F上的线性空间.称W是线性空间V的一个线性子空间.这个到底是
设T是数域P上n维线性空间V的一个线性变换,且T^2=T,R(T)表示T的值域,N(T)表示T的零空间或核,证明:1、N(T)=R(I-T),其中I表示线性空间V上的单位变换;V=R(T)+N(T)
设A为数域P上的n维线性空间V的线性变换,且A^2=A证明:(1)V=A的核加A的值域为直和(2)如果B是V的线性变换,A的核与A的值域是B的不变子空间的充要条件是AB=BA
设V为数域P上的线性空间,A是V上的变换,任意α,β∈v,任意k∈P,A应满足哪些条件才是线性变换?
线性空间,线性变换,特征值与特征向量设V是复数域上的n维线性空间,s,t是V的线性变换,且st=ts.求证:(1)如果λ0是s的特征值,那么λ0的特征子空间V(λ0)是t的不变子空间;(2)s,t至少有一个公
设V是数域P上的n维线性空间,W是V的子空间,证明:W是某个线性变换的核.
设V是数域P上n维线性空间,t是V的一个线性变换,t的特征多项式为f(a).证明:f(a)在p上不可约的充要条件是V无关于t的非平凡不变子空间.
v是数域p上的n维线性空间,T是v的线性变换.证明,存在v的线性变换S,使得TST=T
设V1,V2为数域P上的线性空间,α,β∈V1,k∈P,σ为V1到V2的一个双射,如果V1,V2同构,则应满足___
高等代数作业一、 线性方程组的基础解系,不变子空间,线性变换的特征向量,线性空间的同构 二、 判断正误1.多项式f(x)在数域F上是可约的,则f(x)在F上一定有根.2.n维线性空间V上线性变换为数
一元多项式环构成线性空间,如果只考虑其中次数小于n的多项式,再添上零多项式也构成数域p上的一个线性空间,.为什么要添加零多项式才能构成线性空间?.,
在N维线性空间Pn中,下列N维向量的集合V,是否构成P上的线性空间:V={x=(a1,a2…an)|Ax=0,A∈Pm*n}
向高手请教一道高代题……设V是数域P上的n维线性空间,W是V的子空间,证明:W是某个线性变换的核.
设V1V2为数域P上的线性空间,下面那个说法错误1.V1+V2是V的子空间2.V1∩V2是空集3.a1€V1,a2€V2则a1+a2€V1+V24.b€V1,b不属于V2.则b€V1+V2
设V是实数域R上全体n阶对角矩阵构成的线性空间(运算为矩阵的加法和数的乘法),求V的一个基和维数
设n是正整数,V是数域P上的一个n维线性空间,W1.W2都是V的子空间,而且它们的维数和为n,证明:存在V的线性变换A,使A的值域是W1 ,核是W2
已知v1,v2为数域K上的线性空间V的两个线性子空间,w={ax+by|x属于V1,y属于V2}、已知v1,v2为数域K上的线性空间V的两个线性子空间,对于K中的给定数值a,b令w={ax+by|x属于V1,y属于V2}、对于a、b的所有可