lim(x趋向于无穷大时)x^2[1-cos(1/x)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:00:48
lim(x趋向于无穷大时)x^2[1-cos(1/x)]
x)ըx鄉Ov=O,6}fEQnr~~fMR>) l1_BQ< 5eCs hC]TU P(+ O;ڞ}:h9EϦ1QPxڿiSV<2=

lim(x趋向于无穷大时)x^2[1-cos(1/x)]
lim(x趋向于无穷大时)x^2[1-cos(1/x)]

lim(x趋向于无穷大时)x^2[1-cos(1/x)]
lim x->∞ x²[1 - cos(1/x)]
= lim x->∞ [1 - cos(1/x)] / (1/x²) (分子, 分母同时趋向於0, 可利用洛必达法则)
= lim x->∞ {0 - [-sin(1/x)] * [-x^(-2)]} / [-2x^(-3)]
= lim x->∞ [sin(1/x)] / (2/x) (分子, 分母同时趋向於0, 可利用洛必达法则)
= lim x->∞ [cos(1/x) * (1/x)'] / (2/x)'
= lim x->∞ [cos(1/x)] / 2
= cos(0) / 2
= 1/2