不同底数不同真数怎么比较大小log4 6和log6 9怎么比?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:27:53
不同底数不同真数怎么比较大小log4 6和log6 9怎么比?
xU[OA+] ,t+?@i_|!jf+h@ъ؂҈HUOpgvy/Pl%;ge\XQ&Y`^Z-˛mtF  ڀ7'ǝsп hyYR|(B|Хiպc5u !ܻT2(D-DkbZk͹@JlFL@PW iE*65D-<GVE G>D5%= Nxt'EM%]y\Xַֻs|c[@0>^XYwiI_(qlz\:eṾS(5K7 (JGZmhq8wo+L~ym\ > JU]7B:/ֳvNK,ҿxizJIiJRx(A&)>Q29Q0i7i: sD79O݀c=grϼ/T~vvcf%jŇ:ɟڡt_ǩxDFȂ! DE&5 t%Q)xS0gU$$ DxSj3+&4gsisY?G3gD+e5 GZŎ0_m jgd!&1&eYw< oog

不同底数不同真数怎么比较大小log4 6和log6 9怎么比?
不同底数不同真数怎么比较大小
log4 6和log6 9怎么比?

不同底数不同真数怎么比较大小log4 6和log6 9怎么比?
log4(6) = log4(4*1.5) = 1 + log4(1.5)
log6(9) = 1 + log6(1.5)
因为 log4(1.5) > log6(1.5)
所以 log4(6) > log6(9)

先化为同底对数,再作差
log4 6=ln6/(ln4)=(ln2+ln3)/(2ln2)
log 6 9=ln9/ln6=2ln3/(ln2+ln3)
作差得[(ln2+ln3)^2-4ln2*ln3]/[2ln2(ln2+ln3)]
=(ln3-ln2)^2/[2ln2(ln2+ln3)]
>0
所以log4 6>log6 9...

全部展开

先化为同底对数,再作差
log4 6=ln6/(ln4)=(ln2+ln3)/(2ln2)
log 6 9=ln9/ln6=2ln3/(ln2+ln3)
作差得[(ln2+ln3)^2-4ln2*ln3]/[2ln2(ln2+ln3)]
=(ln3-ln2)^2/[2ln2(ln2+ln3)]
>0
所以log4 6>log6 9
如有疑问请追问
满意请采纳
如有其它问题请采纳此题后点求助,
答题不易,望合作
祝学习进步O(∩_∩)O~

收起

由换底公式,两个数都区以2为底的对数,得
log4 6=log2 6/log2 4=log2 (2*3)/log2 2^2=(1+log2 3)/2=1/2+log2 3/2
log6 9=log2 9/log2 6=2log2 3/(log2 2*3)=2log2 3/(1+log2 3)
log6 9的倒数=(1+log2 3)/2log2 3=1/2+1/2log2 ...

全部展开

由换底公式,两个数都区以2为底的对数,得
log4 6=log2 6/log2 4=log2 (2*3)/log2 2^2=(1+log2 3)/2=1/2+log2 3/2
log6 9=log2 9/log2 6=2log2 3/(log2 2*3)=2log2 3/(1+log2 3)
log6 9的倒数=(1+log2 3)/2log2 3=1/2+1/2log2 3
比较1/2+log2 3/2和1/2+1/2log2 3得
1/2+log2 3/2﹥1/2+1/2log2 3
∴log4 6﹤log6 9

收起

log4 6-log6 9=log4 6-(log4 9)/(log4 6)=[(log4 6)²-log4 9]/log4 6
上式分子=[(1/2)(log2 2+log2 3)]²-log2 3=(1/4)[(log2 3)-1]²
∵log2 3>1
∴分子>0
分母log4 6>0
∴[(log4 6)²-log4 9]/log4 6>0
∴log4 6-log6 9>0
即log4 6>log6 9

不同底数不同真数怎么比较大小,log₄6和log₆9怎么比?
log₄6=log₄[4×(3/2)]=1+log₄(3/2);
log₆9=log₆[6×(3/2)]=1+log₆(3/2);
而log₄(3/2)>log₆(3/2),【真数相同时,底数小...

全部展开

不同底数不同真数怎么比较大小,log₄6和log₆9怎么比?
log₄6=log₄[4×(3/2)]=1+log₄(3/2);
log₆9=log₆[6×(3/2)]=1+log₆(3/2);
而log₄(3/2)>log₆(3/2),【真数相同时,底数小的对数大】
故log₄6>log₆9.
【此类问题一般都要想办法建一座“桥”,这个“桥”就是使它们有相同的真数
或相同的底数。】

收起