∫tan^3x dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:02:57
∫tan^3x dx
xm _Z )]/Ѥ:ppqlOc!hş w΅sD]wMe1[OBA6se2~HO["AV (r4 LshQI4d6Uch]>2E(#@%tm:dOVnn%hx7q%,ۑ1>BVtjQ

∫tan^3x dx
∫tan^3x dx

∫tan^3x dx
tan^2x=sec^2x -1
∫tan^3x dx
=∫tanx(sec^2x -1) dx
=∫tanx sec^2x dx -∫tanxdx
=∫sinx/cos^3x dx -∫sinx/cosxdx
= 1/(2cos^2x)+ln |cosx|+c,c为常数

(tanx)^3=((secx)^2-1)tanx=tanx(secx)^2-tanx
d(secx)=secxtanxdx 原式=∫tanx(secx)^2dx-∫tanxdx=∫secxd(secx)-∫tanxdx=1/2*secx^2+In|cosx|+c