已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 03:41:48
已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设
xTKo@+=yC@EϖKP@iQu)ŻvO 8U9=3̦w ]qn_ټiynּ~YM2(<9. w i1 wWH=kz?Allgu,)20 ӥU^.y{tIJ-%vm`~޷۴2/OW53N+D:LXkXEBYz{w5/+ m~OwYWxvg҃r  #\HBSrQg7*rz}Veű:ᕚ@;{KzGϼ7''cO'du;(]zJL:+̰@cUhq5ڴ^utri.~Fӕ=&ÍfYN4_ 8ގt .46}*驆b|`Qd#z@w9 .xǙJy7}~#rZqRT&lY l XDҊ/. F=nM8q(:aapCy@,ǥ p(pbXQNĩXr8z$2%FR݇BusN!ҘQ(yzT۵7zll}chLТqv#[~p*/ m

已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设
已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理

已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设
(1)将A(-1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:
a-b+c=09a+3b+c=0c=3
,解得:
a=-1b=2c=3
∴抛物线的解析式:y=-x2+2x+3
(2)连接BC,直线BC与直线l的交点为P;
设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入上式,得:
3k+b=0b=3
,解得:
k=-1b=3
∴直线BC的函数关系式y=-x+3;
当x=1时,y=2,即P的坐标(1,2).
(3)抛物线的对称轴为:x=-b/2a
=1,设M(1,m),已知A(-1,0)、C(0,3),则
MA2=m2+4,MC2=m2-6m+10,AC2=10;
①若MA=MC,则MA2=MC2,得:
m2+4=m2-6m+10,得:m=1;
②若MA=AC,则MA2=AC2,得:
m2+4=10,得:m=±
6

③若MC=AC,则MC2=AC2,得:
m2-6m+10=10,得:m1=0,m2=6;
当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;
综上可知,符合条件的M点,且坐标为 M(1,
6
)(1,-
6 )(1,1)(1,0).

已知抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 已知二次函数y=ax2+bx+c的系数满足a-b+c=0,则这条抛物线经过点? 已知抛物线y=ax2+bx+c经过原点和点(-2,0),则2a-3b__0 已知抛物线y=ax2+bx+c的系数a,b,c满足a-b+c=o,则这条抛物线必经过点 已知抛物线y=ax2+bx+c的顶点O′(4,-3),且经过点A(1,0),求此抛物线的解析式. 已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设 已知抛物线y=ax2+bx+c经过A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设 已知抛物线y=ax2+bx+c(a大于0)经过点A(-9,-5)而且b=6a,1.求证:方程ax2+bx+c=0一定有两个不相等的实数根2.试求出抛物线y=ax2+bx+c(a大于0)经过的另一个定点(点A除外,定点坐标为常数) 已知抛物线y=ax2+bx+c经过原点和第二、三、四象限A.a>0,b>0,c>0 B.a 已知抛物线y=ax2+bx,当a>0,b 抛物线y= ax2+bx+c经过A(1,4),B(-1,0),C(-2,5)三点抛物线y= ax2+bx+c经过A(1,4)、B(-1,0)、C(-2,5)三点求抛物线的解析式 如图,抛物线y=ax2+bx+c(a 已知抛物线y=ax2+bx+c(a不等于0)经过点(1,0)则a+b+c的值为 已知抛物线y=ax2+bx+c经过三点A(2,6),B(-1,2),C(0,1)的解析式