一元四次方程求解..x^4-20x^3+232x^2+1320x+4353.5=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:25:17
一元四次方程求解..x^4-20x^3+232x^2+1320x+4353.5=0
一元四次方程求解..
x^4-20x^3+232x^2+1320x+4353.5=0
一元四次方程求解..x^4-20x^3+232x^2+1320x+4353.5=0
x^4-20 x^3+232 x^2+1320 x+4353.5 = 0
((x-24.83194629620492933) x+339.1501329430093285) (x (x+4.831946296204930213)+12.836497990497797142) = 0
FullSimplify[4353.5 + 1320 x + 232 x^2 - 20 x^3 + x^4 == 0]
(339.1501329430093285 + (-24.83194629620492933 + x) x) (12.836497990497797142 + x (4.831946296204930213 + x)) == 0
-2.415973148102465107-2.645670375943621089 i
Select[Solve[(339.1501329430093285049 - 24.83194629620492932531 x + x^2) (12.836497990497797142456 + 4.831946296204930213492 x + x^2) == 0,x],!Element[x /.#1,Reals] & ]
{{x == -2.415973148102465107 - 2.645670375943621089 I},{x == -2.415973148102465107 + 2.645670375943621089 I},{x == 12.41597314810246466 - 13.60124052168065667 I},{x == 12.41597314810246466 + 13.60124052168065667 I}}