设n是正整数,且使得 1/(1+n)+1/(4+n)+1/(9+n)≥1/7,求n的最大值.快,不要复制粘贴!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 04:30:57
设n是正整数,且使得 1/(1+n)+1/(4+n)+1/(9+n)≥1/7,求n的最大值.快,不要复制粘贴!
xSN@!VAK`7fB(. aa"(|6Z_w(+~qeds_ղa+VʝegQNtd~O4Gf@ '[lQ^susƶxYլ<,2-X*` !6B"\Df _ IT=*H^ܵ j`N ]$ICh`Uӂ; ŋQA#3ƚQ 25X;Y#½~L HK#[~T~33Vgpԝ: xa4+IG tLŸF/X!Z_Q p] 1TCѣ|(=N|sJ_F.:/>"bivas߄ 8ƿ]®iFb

设n是正整数,且使得 1/(1+n)+1/(4+n)+1/(9+n)≥1/7,求n的最大值.快,不要复制粘贴!
设n是正整数,且使得 1/(1+n)+1/(4+n)+1/(9+n)≥1/7,求n的最大值.
快,不要复制粘贴!

设n是正整数,且使得 1/(1+n)+1/(4+n)+1/(9+n)≥1/7,求n的最大值.快,不要复制粘贴!
1/(n+1)+1/(n+9)
=[(n+1)+(n+9)]/(n+1)(n+9)
=2(n+5)/[(n+5)-4][(n+5)+4]
=2(n+5)/[(n+5)^2-16]
>2(n+5)/(n+5)^2(这一步是分母加上16,分子不变,分数减小)
=2/(n+5)


1/(n+4)>1/(n+5),
所以有 1/(1+n)+1/(4+n)+1/(9+n)>3/(n+5),
所以有3/(n+5)>=1/7
n<=16,


不懂可问

1/(n+1)+1/(n+9)=2(n+5)/(n+1)(n+9)=2(n+5)/[(n+5)^2-16]>2(n+5)/(n+5)^2=2/(n+5),
1/(n+4)>1/(n+5),
——》 1/(1+n)+1/(4+n)+1/(9+n)>3/(n+5),
——》3/(n+5)>=1/7
——》n<=16,
即n的最大值为16。
请采纳。2(n...

全部展开

1/(n+1)+1/(n+9)=2(n+5)/(n+1)(n+9)=2(n+5)/[(n+5)^2-16]>2(n+5)/(n+5)^2=2/(n+5),
1/(n+4)>1/(n+5),
——》 1/(1+n)+1/(4+n)+1/(9+n)>3/(n+5),
——》3/(n+5)>=1/7
——》n<=16,
即n的最大值为16。
请采纳。

收起

设n是正整数,且使得 1/(1+n)+1/(4+n)+1/(9+n)≥1/7,求n的最大值. 设n是正整数,且使得 1/(1+n)+1/(4+n)+1/(9+n)≥1/7,求n的最大值.快,不要复制粘贴! 设n是正整数,且使得 1/(1+n)+1/(4+n)+1/(9+n)≥1/7,求n的最大值. 设n是正整数,且使得 :1+n分之一+4+n分之一+9+n分之一大于等于七分之一 求n的最大值(要详细过程) 设n是正整数,且使得1/1+n + 1/4+n + 1/9+n 大于等于 1/7 求n的最大值 (1)是否存在正整数m,n,使得m(m+2)=n(n+1)?(2)设k(k≥3)是给定的正整数,是否存在正整数m,n,使得m(m+k)=n(n+1)? 设n是正整数,且使得(如图所示)求n的最大值 已知正整数n大于30,且使得4n-1整除2002n,求n=? 已知正整数n大于30,且使得4n-1整除2002n,求n值 设N是正整数,且使得1 1 1 19 —— + ------ + ----- > -------1+N 3+N 6+N 36求N的最大值.答案为N的最大值是2. 完全平方数:)已知:n≤ 688,且使得式子5n+1是完全平方数的正整数n共有几个? 已知n是正整数,且2n+1与3n+1都是完全平方数,是否存在n,使得5n+3是质数?如果存在请求出所有n的值;(接上)如果不存在,请说明理由 已知正整数n大于30,且使得4 n-1整除2002 n ,求n的值. 已知正整数n大于30,且使得4n-1整除2002n,求n的值 设m,n为正整数,且m是奇数,求证:(2^m-1,2^n+1)=1 使得2n+1整除n的立方+2的正整数n的个数是 设n是一个正整数,且1*2*3*...*n+3是一个完全平方数,求n的值. 已知m n是正整数,且1