求二元函数Z=X^Y的二阶偏导数RT

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 23:47:15
求二元函数Z=X^Y的二阶偏导数RT
x){ɮO>!6".۞6?](bTObR;-ɫɫxg6XTPJSM̺Jʨԯ"Z$*4*u 5&`\i 4CsmP$t< [4*V 6Ǣ&V TS64@@`@?<آ@@%PͶ`ؿFx\ rеڕ\I͐`#ýZ[Q¤9[@BQѪ] C Cp@Cjl @i8

求二元函数Z=X^Y的二阶偏导数RT
求二元函数Z=X^Y的二阶偏导数
RT

求二元函数Z=X^Y的二阶偏导数RT
z=x^y,lnz=ylnx;
(1/z)∂z/∂x=y/x,∂z/∂x=yz/x=yx^(y-1);(1/z)∂z/∂y=lnx,∂z/∂y=zlnx=lnx*x^y;
ln(∂z/∂x)=lny+(y-1)lnx,[1/(∂z/∂x)]*∂²z/∂²x=(y-1)/x,∴ ∂²z/∂²x=(∂z/∂x)(y-1)/x=y(y-1)*x^(y-2);
ln(∂z/∂y)=ln(lnx)+ylnx,[1/(∂z/∂y)]*∂²z/∂²y=lnx,∴ ∂²z/∂²x=(∂z/∂y)*lnx=(lnx)²*x^y;
[1/(∂z/∂y)]*∂²z/∂x∂y=(1/lnx)(1/x)+y/x,∂²z/∂x∂y=(lnx*x^y)*(1/lnx +y)/x=(1+ylnx)*x^(y-1);