已知平面向量A,B,C,满足|A|=|B|=1,向量A与B-A的夹角为120度,且(A-C)*(B-C)=0,则|C|的取值范围是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:22:03
xRJA>θ;L /xkMHra">Q|Ɠ`Oge\-_'7oGF/%wcVۢO^g(
Cry*<^{]VEtOdn-%/{W{X֠~"aoe1#b #:C*.Lø-5L@@شqMLCj&d8R e%D!&QpH Nd5dgnm!9#xnPVUfe!xQ3";g'i
s lCb)+Hx$% hc?}`N99M VL*..1>(M܀iQ5'94υYȻ.j
已知平面向量A,B,C,满足|A|=|B|=1,向量A与B-A的夹角为120度,且(A-C)*(B-C)=0,则|C|的取值范围是
已知平面向量A,B,C,满足|A|=|B|=1,向量A与B-A的夹角为120度,且(A-C)*(B-C)=0,则|C|的取值范围是
已知平面向量A,B,C,满足|A|=|B|=1,向量A与B-A的夹角为120度,且(A-C)*(B-C)=0,则|C|的取值范围是
|a|=|b|=1,a,(b-a)的夹角为120度
(a-c).(b-c)=0
To find :|c|
a.(b-a) = a.b-|a|^2=|a||b-a|cos120度
=>a.b-1=(-1/2)|b-a|
(a.b)^2-2a.b+1 = (1/4)(|b|^2+|a|^2-2a.b)
2(a.b)^2-3a.b+1=0
(2(a.b)-1)(a.b-1)=0
a.b =1/2 or 1 (rejected)
|a+b|^2=|a|^2+|b|^2+2a.b=1+1+1 = 3
|a+b| =√3
(a-c).(b-c)=0
a.b -(a+b).c+|c|^2 =0
|c|^2+|a+b||c|cosx +a.b =0 ( x =(a+b),c 的夹角)
2|c|^2+2√3|c|cosx +1 =0
|c| =[- 2√3cosx +√(12(cosx)^2-8)] /4
max |c| at cosx = -1
max |c| = (√3+1)/2
|c|
已知平面向量a,b,c满足a+b+c=0,且a,b的夹角135已知平面向量a,b,c满足向量a+向量b+向量c=0,且向量a,向量b的夹角135,向量c,向量b的夹角120,|向量c|=2,则|向量a|=?
已知平面向量a,b满足条件 向量a+向量b=(1,0),向量a-向量b=(-1,2),则向量a×向量b等于多少
已知向量a,向量b,向量c,满足|向量a|=2,详见图.
已知平面内四点O,A,B,C满足2向量OA+向量OC=3向量OB,则|向量BC|/|向量AB|=?
已知a.b是平面内两个互相垂直的单位向量,若向量c满足(c+a)*(c-b)=0,则|c|的最大值是
已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a+c)*(b+c)=0,则|c|的最大值是?
已知a,b是平面内互相垂直的单位向量,若向量c满足(a-c)*(b-c)=0,则/c/的最大值是多少
若平面向量a,b满足|a|=1,|b|
已知平面向量a,b,c满足:a⊥c,b*c=-2,|c|=2,若存在实数λ使得向量c=向量a+λ向量b,则λ的值为
已知平面向量a,b,c满足:a⊥c,b*c=-2,|c|=2,若存在实数λ使得向量c=向量a+λ向量b,则λ的值为
若平面向量a,向量b满足|向量a+向量b|=1,(向量a+向量b)//向量c,向量b=(2,-1),向量c=(0,1).求向量a.
已知三角形ABC中,O为平面内一点,且设向量OA=向量a,向量OB=向量b,向量OC=向量c则满足条件(向量a+向量b)•向量AB=(向量b+向量c)•向量BC=(向量c+向量a)•向量CA时,O是三角形的什么
已知A,B,C三点不共线,平面ABC外一点M满足向量OM=1/3向量OA+1/3向量OB+1/3向量OC.判断
已知平面上有四点O,A,B,C,满足向量OA+向量OB+向量OC=0,向量OA*向量OB=向量OB*向量OC=向量OC*向量OA求周长
已知平面向量A,B,C,满足|A|=|B|=1,向量A与B-A的夹角为120度,且(A-C)*(B-C)=0,则|C|的取值范围是
已知非零向量向量a与向量b,满足向量a+向量b=-向量c,向量a-向量b=3向量c,试判断向量a与向量b是否平行?
已知平面向量a,b,c满足|a|=1,|b|=2,向量a,b的夹角为60度,且(a-c)*(b-c)=0,则|c|的取值范围是?
已知a向量,b向量是平面内两个相互垂直的单位向量,若c向量满足(a-c)(b-c)=0 则|c|的取值范围是多少呢?