已知圆O的半径为1,PA PB为该圆的两条切线,A B为切点,那么“向量”PA点乘PB的最小值是多少呢?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:23:00
已知圆O的半径为1,PA PB为该圆的两条切线,A B为切点,那么“向量”PA点乘PB的最小值是多少呢?
xV[oG+UVevwO q$o1J؉MbbLcc"fY =3k0HD4;93sfws6gϡTq*Cae|=s>g'Ϝ:[FU7қhq5` Fu]!L%W@Kh+NwS_fG2S*ҲU4bNABk̚"uHG&D#x$%#j4[QD!5F}5+D<Vf}a&xQcx)Uá2!U`!>ey>DG`=AJxX ѢaZ|G>L:<'x4-@D\\A]DEi=]˶k#)Ay-7&,e[\A5;UPLaDev~ru铏忸0eqB&. Eb /`qxʊl~] طOIHzx<.*GbtUnwޡ>*ZCo߱&7Bǘ@<ŒR"qC'wo=sЏː9_craR d0F.@XC/.W,AQOx 1_js?O2Z(5Nh~$@]{/wfЪ׻]+$$+ݙd`JttkOAiSgM2 nf qGz9LOn?z\k.aD'2 my݁VE1AscOE"#}̘LH$4Xd%k[ +{fb@MvǓtRz {?F|M{*=drH+D ;420s#<(ک{(gewrs:x*W E

已知圆O的半径为1,PA PB为该圆的两条切线,A B为切点,那么“向量”PA点乘PB的最小值是多少呢?
已知圆O的半径为1,PA PB为该圆的两条切线,A B为切点,那么“向量”PA点乘PB的最小值是多少呢?

已知圆O的半径为1,PA PB为该圆的两条切线,A B为切点,那么“向量”PA点乘PB的最小值是多少呢?
我自己做的,说的比较清楚,应该都能看懂的!

设PA=PB=X(x>0),∠APO=α,
则∠APB=2α,由勾股定理得PO=根号(1+x^2),
sinα=1/根号(1+x^2),
向量PA•向量PB=|PA|•|PB|cos2α=x^2(1-2sin^2α)={x^2(x^2-1)}/(1+x^2)
=(x^4-x^2)/(1+x^2),
令向量PA•向量PB=...

全部展开

设PA=PB=X(x>0),∠APO=α,
则∠APB=2α,由勾股定理得PO=根号(1+x^2),
sinα=1/根号(1+x^2),
向量PA•向量PB=|PA|•|PB|cos2α=x^2(1-2sin^2α)={x^2(x^2-1)}/(1+x^2)
=(x^4-x^2)/(1+x^2),
令向量PA•向量PB=y,
则y==(x^4-x^2)/(1+x^2),
即x^4-(1+y)x^2-y=0,
由于x^2是实数∴△={-(1+y)}^2-4×1×(-y)≥0,
y^2+6y+1≥0
解得y≤-2√2-3或y≥-3+2√2
x^2>0,设x^2=t,
方程x^4-(1+y)x^2-y=0可以化为t^2-(1+y)t-y=0,
根据韦达定理得:t1+t2=1+y,t1t2=-y,
当y≤-2√2-3时,t1+t2<0, t1t2>0,
这时t1,t2都是负值,因为x^2=t>0,所以不合题意,舍去。
当y≥-3+2√2时,t1+t2>0, t1t2>0,
这时t1,t2都是正值,符合题意。
故(向量PA•向量PB)min=-3+2√2

收起

∵PA、PB分别切⊙O于A、B,∴PA⊥AO、PB⊥BO、PA=PB、∠APB=2∠APO。
∴cos∠APB=cos2∠APO=1-2(sin∠APO)^2=1-2(AO/PO)^2=1-2/PO^2。
∴向量PA·向量PB=PA×PBcos∠APB=PA^2(1-2/PO^2)=(PO^2-AO^2)(1-2/PO^2)
=(PO^2-1)(1-2/PO^2)=PO^2...

全部展开

∵PA、PB分别切⊙O于A、B,∴PA⊥AO、PB⊥BO、PA=PB、∠APB=2∠APO。
∴cos∠APB=cos2∠APO=1-2(sin∠APO)^2=1-2(AO/PO)^2=1-2/PO^2。
∴向量PA·向量PB=PA×PBcos∠APB=PA^2(1-2/PO^2)=(PO^2-AO^2)(1-2/PO^2)
=(PO^2-1)(1-2/PO^2)=PO^2-2-1+2/PO^2=(PO^2+2/PO^2)-3
≧2√[PO^2(2/PO^2)]-3=2√2-3。
∴向量PA·向量PB的最小值为 2√2-3。

收起

已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为两切点,那么PA*PB的最小值为? 已知圆O半径是1,PA PB为该圆的两条切线,A,B为两切点,那么向量PA*向量PB的最小值是多少? 已知圆O的半径为1,PA,PB为圆的两条切线,A,B为两切点,那么→PA* →PB最小值为? 已知圆O的半径为1,PA,PB为该圆的两条切线.A,B为两切点.那么(向量)PA×(向量)PB的最小值为多少? 已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为两切点,那么向量PA*向量pB的最小值为?请详解 已知圆O的半径为1,PA,PB为该圆的两条切线.A,B为两切点.那么(向量)PA×(向量)PB的最小值为多少?谢 已知圆O的半径为1,PA,PB为该圆的两条切线.A,B为两切点.那么(向量)PA×(向量)PB的最小值为多少?A,-4+根 已知圆O的半径为1,PA,PB为该圆的两条切线,AB为切点.那么向量PA点乘向量PB的最小值为? 已知圆O的半径为1,PA PB为该圆的两条切线,A B为切点,那么“向量”PA点乘PB的最小值是多少呢? 已知圆O的半径为2,PA,PB为该圆的两条切线,A,B为两切点,求PA向量点乘PB向量的最小值 1.已知x1是方程lgx+x=3的根 ,x2是方程x+10^x=3的跟,那么x1+x2=________2.已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为两切点,那么向量PA*向量PB的最小值为___________ 已知圆o的半径为1 PA为圆O的切线A为切点且PA=1弦AB=根号2 求PB 数学结合向量与三角函数的题目已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么向量PA·向量PB的最小值为? 求详细解题过程,非常感谢! 请用判别式法计算 已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么向量PA*PB 的最小值为为什么x^4 可以直接用判别式 不用考虑x^4取值范围? 已知圆o的半径为1pa,pb为圆的两条切线,a,b为切点(1)设∠apo=θ,用θ表示PA·PB(2)求PA·PB的范围题目中的PA·PB是指向量我只要第二问 已知pa,pb切圆o于a,b两点连ab,且pa,pb的长是方程x方-2mx+3=0de 两根,AB=M,求圆O的半径PA、PB为圆O的切线,A、B为切点,连接OP交AB于C,OA,PA,PB的长!只知道AB=M,PA,PB的长是方程X方-2MX+3=0的两根 ⊙O₁与⊙O₂外切于P,两圆的公切线长为AB,已知PA=4,PB=3(1)求AB(2)求⊙O₁的半径 如图,已知圆O的半径为3cm,PO=6cm,PA,PB分别切圆O于A,B,则PA=