函数 f (x,y)在点(x0 ,y0 )的某邻域内所有偏导数存在是 f (x,y)在该点所 有方向导数存在的什么条件偏导数存在不就可以确定方向导数存在么?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:22:51
x푿
P_=سRnBDPE(枣E'\Ėhii8WTqrdU%#6j9$F~8xt;80@F#ωǹZ2"q=N$a+Fp<V88ږJ]mxRel s^\ڑ0d#v '0V+(rC+=V
函数 f (x,y)在点(x0 ,y0 )的某邻域内所有偏导数存在是 f (x,y)在该点所 有方向导数存在的什么条件偏导数存在不就可以确定方向导数存在么?
函数 f (x,y)在点(x0 ,y0 )的某邻域内所有偏导数存在是 f (x,y)在该点所 有方向导数存在的什么条件
偏导数存在不就可以确定方向导数存在么?
函数 f (x,y)在点(x0 ,y0 )的某邻域内所有偏导数存在是 f (x,y)在该点所 有方向导数存在的什么条件偏导数存在不就可以确定方向导数存在么?
函数 f (x,y)在点(x0 ,y0 )的某邻域内所有偏导数存在是 f (x,y)在该点所 有方向导数存在的无关条件.
偏导数只是在 x轴,y轴两个方向的导数,而方向导数是任意方向的导数.
如果一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续,那么二元函数f(x,y)在点(x0,y0)是否必然连续?反之呢?如果一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续,那么二元函数f(x,y)在点(x0,y0)是否必然连续?反
函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()A.连续 B.不连续 C.可微 D.不一定可微
可微函数z=f(x,y)在点p0(x0,y0)取极值是fx'(x0,y0)=fy'(x0,y0)=0的什么条件?
为什么说函数f(x,y)在点(x0,y0)可微分,就能推出f(x,y)在点(x0,y0)处连续呢?
二元函数f(x,y)在点(x0,y0)处两个偏导数 x(x0,y0),y(x0,y0)存在是f(x,y)在该点连续的?什么条件
二元函数f(x,y)在点(x0,y0)处两个偏导数 x(x0,y0),y(x0,y0)存在是f(x,y)在该点连续的?什么条件
有关二元函数f ( x,y)的下面四条性质:(请说出理由)有关二元函数f ( x,y)的下面四条性质:(1) f ( x,y)在点 ( x0 ,y0 )可微; (2) f 'x(x0,y0),f'y(x0,y0) 存在;(3) f ( x,y)在点( x0 ,y0)连续; (4) f 'x(x,y)
二元函数z=f(x,y)在点(x0,y0)处的连续是函数在点(x0,y0)处可微分的什么条件
设二元函数f(x,y)在点(x0,y0)处满足fx(x0,y0)=0,且fy(x0,y0)=0,则有?f(x,y)在点(x0,y0)处一定取得最大值吗?还是最小值?f(x,y)在点(x0,y0)处一定取得极值?还是不一定取得极值?
若二元函数f(x,y)在R^2上有极值点(x0,y0),则该函数在(x0,y0)连续吗
多元函数连续能推出偏导数存在吗?“f(x,y)在点(x0,y0)连续”能推出“f(x0,y0)对x求偏导、f(x0,y0)对y求偏导存在”吗?
对于二元函数f'x(x0,y0)=0,f'y(x0,y0)=0则在点M(x0,y0)处f(x,y)A必连续B必须取极值C可能取极值
设函数y=f(x)在x=x0点处可导,则曲线y=f(x)在(x0,y0)处切线方程为____A.y-y0=f(x0)(x-x0) B.y-y0=f(x)(x-x0) C.y-y0=f'(x0)(x-x0) D.y-y0=f'(x)(x-x0)
设f(x,y)与φ(x,y)均为可微函数,且φ'y(x,y)≠0,已知点(x0,y0)是f(x,y)在条件φ(x,y)=0下的一个极值点,下列结论正确的是( )ABC若f'x(x0,y0)=0,则f'y(x0,y0)≠0D若f'x(x0,y0)≠0,则f'y(x0,y0)≠0(f'x和f'y 中'
2.若fx(x0,y0)=fy(x0,y0)=0,则点(x0,y0)一定是函数f (x,y)的( )
偏导数fx(x0,y0)与fy(x0,y0)存在是函数f(x,y)在点(x0,y0)连续的什么条件?充分非必要必要非充分充要非充非要
详细哦、若fx(x0,y0)=fy(x0,y0)=0,则函数f(x,y)在点(x0,y0)处()A.连续 B.偏导数存在 C.有极值 d.可微
设z=f(x,y)在点(x0,y0)处自变量有增量Δx,Δy,函数全增量为Δz,若函数在该点可微,则在点(x0,y0)处:A Δt=-dzB Δz=fx(x0,y0)+fy(x0,y0)CΔz=fx(x0,y0)dx+fy(x0,y0)dyDΔz=dz+op(p=根号下Δx^2+Δy^2)