偏导数fx(x0,y0)与fy(x0,y0)存在是函数f(x,y)在点(x0,y0)连续的什么条件?充分非必要必要非充分充要非充非要

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:07:10
偏导数fx(x0,y0)与fy(x0,y0)存在是函数f(x,y)在点(x0,y0)连续的什么条件?充分非必要必要非充分充要非充非要
x){tgS7UhTTh>їV e?];fھFBR(i=5/{{Y-Ov7

偏导数fx(x0,y0)与fy(x0,y0)存在是函数f(x,y)在点(x0,y0)连续的什么条件?充分非必要必要非充分充要非充非要
偏导数fx(x0,y0)与fy(x0,y0)存在是函数f(x,y)在点(x0,y0)连续的什么条件?
充分非必要
必要非充分
充要
非充非要

偏导数fx(x0,y0)与fy(x0,y0)存在是函数f(x,y)在点(x0,y0)连续的什么条件?充分非必要必要非充分充要非充非要
偏导数存在且连续是函数连续的充分非必要条件
偏导数存在是函数连续的非充分非必要条件

设f(x,y)与φ(x,y)均为可微函数,且φ对y的偏导数不为零,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是:A .若fx(x0,y0)=0,则fy(x0,y0)=0B .若fx(x0,y0)=0,则fy(x0,y0)≠0C .若fx(x0,y0)≠0, 偏导数fx(x0,y0)与fy(x0,y0)存在是函数f(x,y)在点(x0,y0)连续的什么条件?充分非必要必要非充分充要非充非要 “fx(x0,y0),fy(x0,y0)都存在”是“f(x,y)在(x0,y0)点沿任意方向的导数存在”的什么条件? 详细哦、若fx(x0,y0)=fy(x0,y0)=0,则函数f(x,y)在点(x0,y0)处()A.连续 B.偏导数存在 C.有极值 d.可微 一个偏导数的证明题设F(X,Y)具有一阶连续偏导数,且(Fx)^2+(Fy)^2不等于0.对任意实数t有F(tx,ty)=tF(x,y),试证明曲面Z=F(X,Y)上任一点(X0,Y0,Z0)处的发现与直线(X/X0)=(Y/Y0)=(Z/Z0)相垂直. 2.若fx(x0,y0)=fy(x0,y0)=0,则点(x0,y0)一定是函数f (x,y)的( ) 可微函数z=f(x,y)在点p0(x0,y0)取极值是fx'(x0,y0)=fy'(x0,y0)=0的什么条件? 函数z=f(x,y)在点(x0,y0)处具有两个偏导数fx(x0,y0)、fy(x0,y0)是函数在该点存在全微分的( ) A.充分条件B.充要条件C.必要条件D.既不是充分条件,又不是必要条件 函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()A.连续 B.不连续 C.可微 D.不一定可微 函数z=f(x)有fx(x0,y0),fy(x0,y0)存在,则有f(x0,y0)存在.为什么 方向导数的问题?在二元函数中,在P0点沿任一L方向的导数为:fx(x0,y0)cosα+fy(x0,y0)cosβ;既然是二元函数那就是空间的,L方向是任意的话,那就不止与x,y轴两个夹角α、β呀,应该有a,β,γ才对吧,所 函数z=f(x)在点(x0,y0)具有偏导数,则它在点(x0,y0)的极值的(是什么条件)为fx(x0,y0)=0,fy(x0,y0)=0A,必要条件B,充分条件C,必要不充分条件D,既不充分又非必要条件 几道关于偏导的题1 设F(X,Y)具有一阶连续偏导数,且(Fx)的平方+(Fy)的平方不等于0.对任意实数t有F(tx,ty)=tF(x,y),试证明曲面Z=F(X,Y)上任一点(X0,Y0,Z0)处的发现与直线(X/X0)=(Y/Y0)=(Z/Z0)相垂直.符号不 设z=f(x,y)在点(x0,y0)处自变量有增量Δx,Δy,函数全增量为Δz,若函数在该点可微,则在点(x0,y0)处:A Δt=-dzB Δz=fx(x0,y0)+fy(x0,y0)CΔz=fx(x0,y0)dx+fy(x0,y0)dyDΔz=dz+op(p=根号下Δx^2+Δy^2) 设二元函数f(x,y)在点(x0,y0)处满足fx(x0,y0)=0,且fy(x0,y0)=0,则有?f(x,y)在点(x0,y0)处一定取得最大值吗?还是最小值?f(x,y)在点(x0,y0)处一定取得极值?还是不一定取得极值? 高数--切平面方程和法平面方程我觉得这两个方程的求法怎么是一样的呢?都是对函数求M(x0,y0,z0)点的偏导,得到法向量n(Fx,Fy,Fz),然后Fx(x-x0)+Fy(y-y0)+Fz(z-z0)=0.但我看切平面和法平面应该是不一样 设可微函数z=f(x,y)在点(x0,y0)取得极值,这下列说法错误的是A、fx(x0,y0)=fy(x0,y0)=0;B、曲面z=f(x,y)在(x0,y0,z0)处具有水平的切平面;C、fxy(x0,y0)=0;D、dz|(x0,y0)=0;但是我找不出来哪个是错的? 隐函数存在定理1的一些疑惑设函数F(x,y)在点P(x0,y0)的某一邻域内具有连续偏导数,且F(x0,y0)=0;Fy(x0,y0)≠0,则方程F(x,y)=0在点(x0,y0)的某一邻域内有恒定能唯一确定一个连续且具