分式怎么分解因素

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 11:36:02
分式怎么分解因素
x[[oH+zZH D̴?1 H 79dɲ.N[{|Ķcj#RS~EI%.dթS;29[2~+71_h3ZkYWd2vP2?Vڼ-_3jska[vfgxR*U3{sa?2 *̲u:3\7TU~|lv yܠjfi<_Ԛֆ˚W0$+~zkp0ʰwaa#gg8A:z-*އ3å]F1M$x.!n *),Q)1 :-R4[a@3 x["/ȧi-e9~ QZJ'~3ؾflUH}nw-Graeߣ6ps Za;́U8a{'w;N @/0w,Af'[ {Lj ց[b[<}C'O"plɟ?(:;*-Hɧ&nO@gk^~١*JP-Gz\xk?2!0 牽%l%q x(RӄS/5/t ձe`$SAT"!d(t)"z~:/h2)&:v ͂L~uh!ֱeopvFls0T⡅4t)?GZhYKjrtQƞ)jh3]Pf'fF±γr i'FIdyk9:%hUvz dpXL3ܬKPMJD]e2OE-de.=.ErGN:WNۥ_/#ͫ/SN`fTf|rE9\2Or`v 2HtX/$ƒo5%ESD[Q~ǹUڮbU2B\· `NjmQbG<&!(3bCE[o1v0Rwf xoo 778-a5l& NE- ʕAkaPD:S2w7r(B1`E½횧. {.`j"Uӿ{wfol>ώmIaF.5_(/cA~hV_,fmv< 6r:tqcyC?>l콷V5K5[7O'(^RY%Ԙ#]P#̻uyz(lga rv_a%:cq̕/4٩CŖ1pRNl$T/llloCwC9"tcD ז*J?1an/[NQdi[0$+Ո%gE &E379O tSA/lc3ЯO#f412Yq҉K4;Ut :7JVG_qT>r]'W[VҐ:cJ zE SA ѹ@FAQ ad}߭cXN.q-jEmVnKhƭt3Q] S=4!`˛U2NN eˎJencߞq)e˾?{>|udRӟ]x^6J*i;"Clm;N 1<06ijwx.4)a'14K,W/ [噉Ov#3ya(n QqЋ;EJ]Z@OdxXρ,d1KI&᭸uX\|צt{F0 2n;8()f)信w2@>iH_Yñ );dxX|vư \UL.4% ? |և B e3ח[ c-k-ݦjsjPՇy<9bS2,%=1\<^Dpɍa}UfR-tq*xqkS_7yp"vVe7ZL(Jzk-Wv}t\dmL`?%c8maao3Cff({҇Zivh:/,KۥӮԥe^2۲1Kra&/o>Q!tz;D`DK/\v"6 1B{%O$l}Ϟ&,L_a(qnpOxiA azʜoI\`DWL Q^Mө?R~8h^j9aѶLնE֎F^ܘ)Q\L4M|Ii@cӵ҂he<:kv̤Ѝ9a.\NѵRDӈ7㠣^v=XNA[0E2R |NOH5pZ%1_NzZ/>)r DY.鈛f 4d9JR:Tt߅ckWo.bHaxJs&".BXc͓'<- gY,'o7a{liq1o|}m쫷%i'XY|'WM8-O8S_;]B϶WBvJR|zz91|?Җ9|?#k'?(^Dϼbetw%ܝ

分式怎么分解因素
分式怎么分解因素

分式怎么分解因素
方法   因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法.而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等.
  注意三原则
  1 分解要彻底
  2 最后结果只有小括号
  3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1))
编辑本段基本方法 ⑴提公因式法
  各项都含有的公共的因式叫做这个多项式各项的公因式.
  如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
  具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.
  如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数.提出“-”号时,多项式的各项都要变号.
  口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.
  例如:-am+bm+cm=-m(a-b-c);
  a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b).
  注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式
  ⑵公式法
  如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.
  平方差公式:a^2-b^2=(a+b)(a-b);
  完全平方公式:a^2±2ab+b^2=(a±b)^2;
  注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
  立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
  立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
  完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
  公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
  例如:a^2 +4ab+4b^2 =(a+2b)^2.
  (3)分解因式技巧
  1.分解因式与整式乘法是互为逆变形.
  2.分解因式技巧掌握:
  ①等式左边必须是多项式;
  ②分解因式的结果必须是以乘积的形式表示;
  ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;
  ④分解因式必须分解到每个多项式因式都不能再分解为止.
  注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑.
  3.提公因式法基本步骤:
  (1)找出公因式;
  (2)提公因式并确定另一个因式:
  ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;
  ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
  ③提完公因式后,另一因式的项数与原多项式的项数相同.
编辑本段竞赛用到的方法 ⑶分组分解法
  分组分解是解方程的一种简洁的方法,我们来学习这个知识.
  能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法.
  比如:
  ax+ay+bx+by
  =a(x+y)+b(x+y)
  =(a+b)(x+y)
  我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难.
  同样,这道题也可以这样做.
  ax+ay+bx+by
  =x(a+b)+y(a+b)
  =(a+b)(x+y)
  几道例题:
  1. 5ax+5bx+3ay+3by
  解法:=5x(a+b)+3y(a+b)
  =(5x+3y)(a+b)
  说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出.
  2. x^3-x^2+x-1
  解法:=(x^3-x^2)+(x-1)
  =x^2(x-1)+ (x-1)
  =(x-1)(x2+1)
  利用二二分法,提公因式法提出x2,然后相合轻松解决.
  3. x2-x-y2-y
  解法:=(x2-y2)-(x+y)
  =(x+y)(x-y)-(x+y)
  =(x+y)(x-y-1)
  利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决.
  
  
⑷十字相乘法
  这种方法有两种情况.
  ①x²+(p+q)x+pq型的式子的因式分解
  这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x²+(p+q)x+pq=(x+p)(x+q) .
  ②kx²+mx+n型的式子的因式分解
  如果有k=ac,n=bd,且有ad+bc=m时,那么kx²+mx+n=(ax+b)(cx+d).
  图示如下:
  ×
  c d
  例如:因为
  1 -3
  ×
  7 2
  -3×7=-21,1×2=2,且2-21=-19,
  所以7x²-19x-6=(7x+2)(x-3).
  十字相乘法口诀:首尾分解,交叉相乘,求和凑中
  
⑸裂项法
  这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解.这钟方法的实质是分组分解法.要注意,必须在与原多项式相等的原则下进行变形.
  例如:bc(b+c)+ca(c-a)-ab(a+b)
  =bc(c-a+a+b)+ca(c-a)-ab(a+b)
  =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
  =c(c-a)(b+a)+b(a+b)(c-a)
  =(c+b)(c-a)(a+b).
  
  
⑹配方法
  对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法.属于拆项、补项法的一种特殊情况.也要注意必须在与原多项式相等的原则下进行变形.
  例如:x²+3x-40
  =x²+3x+2.25-42.25
  =(x+1.5)²-(6.5)²
  =(x+8)(x-5).
  
⑺应用因式定理
  对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.
  例如:f(x)=x²+5x+6,f(-2)=0,则可确定x+2是x²+5x+6的一个因式.(事实上,x²+5x+6=(x+2)(x+3).)
  注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数;
  2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数
  
⑻换元法
  有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法.

  注意:换元后勿忘还元.
  例如在分解(x²+x+1)(x²+x+2)-12时,可以令y=x²+x,则
  原式=(y+1)(y+2)-12
  =y²+3y+2-12=y²+3y-10
  =(y+5)(y-2)
  =(x²+x+5)(x²+x-2)
  =(x²+x+5)(x+2)(x-1).
  也可以参看右图.
  
  
⑼求根法
  令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .
  例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0,
  则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.
  所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).
  
  
⑽图象法
  令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).
  与方法⑼相比,能避开解方程的繁琐,但是不够准确.
  例如在分解x^3 +2x^2-5x-6时,可以令y=x^3; +2x^2 -5x-6.
  作出其图像,与x轴交点为-3,-1,2
  则x^3+2x^2-5x-6=(x+1)(x+3)(x-2).
  
  
⑾主元法
  先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.
  
  
⑿特殊值法
  将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.
  例如在分解x^3+9x^2+23x+15时,令x=2,则
  x^3 +9x^2+23x+15=8+36+46+15=105,
  将105分解成3个质因数的积,即105=3×5×7 .
  注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,
  则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此.
  
  
⒀待定系数法
  首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.
  例如在分解x^4-x^3-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式.
  于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d)

  =x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd
  由此可得a+c=-1,
  ac+b+d=-5,
  ad+bc=-6,
  bd=-4.
  解得a=1,b=1,c=-2,d=-4.
  则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4).
  也可以参看右图.
  
  
⒁双十字相乘法
  双十字相乘法属于因式分解的一类,类似于十字相乘法.
  双十字相乘法就是二元二次六项式,启始的式子如下:
  ax^2+bxy+cy^2+dx+ey+f
  x、y为未知数,其余都是常数
  用一道例题来说明如何使用.
  例:分解因式:x^2+5xy+6y^2+8x+18y+12.
  分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解.
  图如下,把所有的数字交叉相连即可
  x 2y 2
  ① ② ③
  x 3y 6
  ∴原式=(x+2y+2)(x+3y+6).
  双十字相乘法其步骤为:
  ①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y);
  ②先依一个字母(如y)的一次系数分数常数项.如十字相乘图②中6y²+18y+12=(2y+2)(3y+6);
  ③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错.
编辑本段多项式因式分解的一般步骤
  ①如果多项式的各项有公因式,那么先提公因式;
  ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
  ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
  ④分解因式,必须进行到每一个多项式因式都不能再分解为止.
  也可以用一句话来概括:“先看有无公因式,再看能否套公式.十字相乘试一试,分组分解要合适.”
  几道例题
  1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.
  原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项)
  =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)
  =[(1+y)+x^2(1-y)]^2-(2x)^2
  =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]
  =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
  =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
  =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).
  2.求证:对于任何实数x,y,下式的值都不会为33:
  x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.
  原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
  =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
  =(x+3y)(x^4-5x^2y^2+4y^4)
  =(x+3y)(x^2-4y^2)(x^2-y^2)
  =(x+3y)(x+y)(x-y)(x+2y)(x-2y).
  (分解因式的过程也可以参看右图.)
  当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立.
  3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形.
  分析:此题实质上是对关系式的等号左边的多项式进行因式分解.
  证明:∵-c^2+a^2+2ab-2bc=0,
  ∴(a+c)(a-c)+2b(a-c)=0.
  ∴(a-c)(a+2b+c)=0.
  ∵a、b、c是△ABC的三条边,
  ∴a+2b+c>0.
  ∴a-c=0,
  即a=c,△ABC为等腰三角形.
  4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式.
  -12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)
  =-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).

什么意思?