设矩阵A是m×n阶矩阵,则方程组AX=O仅有零解的充要条件是:A的列向量组线性无关,这是为什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:28:16
设矩阵A是m×n阶矩阵,则方程组AX=O仅有零解的充要条件是:A的列向量组线性无关,这是为什么?
x){n+_l^y1ٴWt?adw9/go{|Y-O[[_,k|6wۀzAbӟN?ifg<ٱ';;mn;˽YUd~z5 545m <#MTֳ/.H̳y5B

设矩阵A是m×n阶矩阵,则方程组AX=O仅有零解的充要条件是:A的列向量组线性无关,这是为什么?
设矩阵A是m×n阶矩阵,则方程组AX=O仅有零解的充要条件是:A的列向量组线性无关,这是为什么?

设矩阵A是m×n阶矩阵,则方程组AX=O仅有零解的充要条件是:A的列向量组线性无关,这是为什么?
齐次线性方程组AX=0仅有零解的充要条件是
(1)r(A)=n
(2)A的列向量线性无关.

设矩阵A是m×n阶矩阵,则方程组AX=O仅有零解的充要条件是:A的列向量组线性无关,这是为什么? 齐次方程组AX=O(A为m*n矩阵)只有零解的充分必要条件是? A是m*n矩阵,B是n*s矩阵,X是n*1矩阵,证明AB=O的充要条件是B的每一列都是齐次方程组AX=O的解 设A是m*n矩阵,且AB=CA,则B一定是?阶矩阵 线性方程组的一道问题证明:设A为m*n矩阵,AT是A的转置矩阵,则n元齐次线性方程组AX=O与ATAX=O同解 设A是n阶整数矩阵,求证:矩阵方程Ax=0.5x必无解 设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,使得A=P(Er O)Q(O O)是一个大括号 证明:设A是m×n矩阵,证明若对任意n×1矩阵X,都有AX=0,则A=0 证明:设A是m×n矩阵,证明若对任意n×1矩阵X,都有AX=0,则A=0 一道大学线性代数可逆矩阵题设A为m阶可逆矩阵,B为n阶可逆矩阵,C为n x m 矩阵.证明:分块矩阵D=(O AB C)是可逆矩阵,并求D的逆矩阵及伴随矩阵 设A为n阶矩阵,且设A为n阶矩阵,且A中每行元素之和都是0,如果秩r(A)=N-1,则齐次方程组Ax=0的通解是 设A是m*n矩阵,B是n*s矩阵,x是列向量,证明:AB=O的充分必要条件是B的每一列都是齐次线性方程组AX=O的解 线性代数题 设含m个方程和n个未知向量的非齐次线性方程组AX=b关于任意一个m维常熟向量b都有解则第二个问题:设A是M*N阶矩阵,则对于齐次线性方程组AX=0有:A若r=m则方程组只有零解B若A的列 设n元齐次方程组AX=0的系数矩阵的秩为r,则AX=0有非零解的充分必要条件是 A r=n B设n元齐次方程组AX=0的系数矩阵的秩为r,则AX=0有非零解的充分必要条件是 A r=n B r>=n C r>n D r 设A为m*n矩阵,则非其次线性方程组Ax=β有唯一解的充要条件是? 若A是n阶正定矩阵,则方程组AX=0的解得集合是? 设A,C分别为m阶,n阶可逆矩阵,求分块矩阵E=(B C ;A O)的逆矩阵 线性方程组AX=B中,矩阵A是m行n列矩阵,且m