求∫l dx-dy+ydz,其中L为有向闭折线ABCA,这里的A,B,C依次为(1,0,0),(0,1,0),(0,0,1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:48:17
求∫l dx-dy+ydz,其中L为有向闭折线ABCA,这里的A,B,C依次为(1,0,0),(0,1,0),(0,0,1)
xN0_ HWuyD(B=`v`C"@UE]P)IC{]4._; =eQgodO_\,n|:kv8&TUc4a)!e+9TG:qAGkXU6S$Uv 1N)|w] b,B_ @ŕkhvuq/Dv;MmQa.FpCAͭg7') 8|F,*V˕b82Fg#]×P)@=NXӶpnapPCt(Ɨp)h

求∫l dx-dy+ydz,其中L为有向闭折线ABCA,这里的A,B,C依次为(1,0,0),(0,1,0),(0,0,1)
求∫l dx-dy+ydz,其中L为有向闭折线ABCA,这里的A,B,C依次为(1,0,0),(0,1,0),(0,0,1)

求∫l dx-dy+ydz,其中L为有向闭折线ABCA,这里的A,B,C依次为(1,0,0),(0,1,0),(0,0,1)
∫=∫AB+∫BC+∫CA.
在AB:dz=0.x+y=1.dy=-dx.
∫AB=∫[1,0]2dx=2x在[1,0]值差=-2.
在BC:dx=0.y+z=1dy=-dz.y=1-z.
∫BC=∫[0,1](1+1-z)dz=(2z-z²/2)在[0,1]值差=3/2.
在CA:y=0.dy=0.x+z=1.dx=-dz.
∫CA=∫[0,1](1-0)dx=x在[0,1]值差=1.
∫l dx-dy+ydz=-2+3/2+1=1/2.

求∫l dx-dy+ydz,其中L为有向闭折线ABCA,这里的A,B,C依次为(1,0,0),(0,1,0),(0,0,1) 计算第二类曲线积分∫L x^3dx+3zy^2dy-x^2ydz其中L是从点A(3,2,1)到点B(0,0,0)的直线段 求∫L{(x+y)/(x^2+y^2)dx-(x+y)/(x^2+y^2)dy},其中L为圆周x^2+y^2=a^2(按逆时针方向绕行).这里有个按逆时针方向绕行我就不会做了, 计算积分∫(x^3-y)dx-(x+siny)dy,其中L是曲线y=x^2上从点(0,0)到点(1,1)之间的一段有向弧. 计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y=1-cost 从点O(0,0)到A(π,2)的一段计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y 求∮(x+y)dx-(x-y)dy 其中L为椭圆x^2/a^2+y^2/b^2=1 取逆时针方向 的解法 计算∫(x^2-2y)dx+(x+y^2)dy其中L为三顶点分别为(0,0)(3,0)(3,4)的三角形正向边界 求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(a,0)到点B(0,0)的上半圆周用完格林公式后是怎么做的 求具体过程 求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(2,0)到点B(0,0)的圆周x^2+y^2=2x 高数题求解,求∫(x-y)dx-(x+siny)dy,其中L沿y=√(2x-x)从点(0,0)到点(1,1) ∫L(x+y)dx+(x-y)dy,L为从(1,1)到(2,3)的直线. ∮L(x+y)dx-(x-y)dy其中L是按正方向经过以A(1,1),B(3,2),C(2,5)为顶点的三角形围线错了,∮L(x+y)dx-(x-y)dy应该改为∮L(x+y)^2dx-(x^2+y^2)dy 计算曲线积分∫L(3xy+sinx)dx+(x2-yey)dy,其中L是曲线y=x2-2x上以O(0,0)为起点,A(4,8)为终点弧段 计算∫L(x^2+3y)dx+(y^2-x)dy其中L为上半圆周y=√(4x-x^2)从O(0,0)到A(4,0) 计算∫L(x^2+3y)dx+(y^2-x)dy 其中L为上半圆周y=√(4x-x^2)从O(0,0)到A(4,0) 计算曲线积分∫L (x^2+2xy)dx+(x^2+y^4)dy,其中L为点(0,0)到点(1,1)的曲线弧y=sin((nx)/2) 对坐标的曲线积分问题计算∫(L) (x+y)dy+(x-y)dx / x^2+y^2-2x+2y ,其中L为圆周(x-1)^2 + (y+1)^2 =4正向 求L=∫(x^2+2xy)dx-(x^2+y^2siny)dy,其中L是抛物线y=x^2从点A(-1,1)到点B(1,1)的一段弧.