已知Sn为等差数列an前N项和,若S1=1,S4/S2=4,则S6/S4的值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:39:54
已知Sn为等差数列an前N项和,若S1=1,S4/S2=4,则S6/S4的值为
xQKN0JRdlK@# *@ %l *U@MDn˪W`IR(bѕg<{ދ;m7~]r7~\6H?o_y5?E7RCeFqc-p2>8kRv_|T%\1m#S.  JZFU?ʫ3DC cZ(jVNVB1?$],4Nޑm",ޔ-)%梸*1/T{&  r9GL"&l0F?.^T0{N'*H1ò YyC\a x5`(rX@zLbF D]o1CM:ᯱ}{To4

已知Sn为等差数列an前N项和,若S1=1,S4/S2=4,则S6/S4的值为
已知Sn为等差数列an前N项和,若S1=1,S4/S2=4,则S6/S4的值为

已知Sn为等差数列an前N项和,若S1=1,S4/S2=4,则S6/S4的值为
解;
S1=a1=1
Sn为等差数列an前N项和
Sn=a1n+n(n-1)d/2
S4=4+6d
S2=2+d
S4/S2=(4+6d)/(2+d)=4
解得:d=2
S4=4+6d=16
S6=6+15d=36
S6/S4=36/16=9/4

已知Sn为等差数列an前N项和,所以Sn=na1+n(n-1)d/2;因S1=1,所以S1=a1+0=1,则a1=1;因S4/S2=4 ,则 (4a1+4(4-1)d/2)/(2a1+2(2-1)d/2)=4,所以d= 2a1=2 ;
故S6/S4=(6+6(6-1)2/2)/(4+4(4-1)2/2)=36/16=9/4

9/4

a1=1
S4/S2=4
S4=4S2
4a1+6d=4(2a1+d)
2d=4a1
d=2a1=2
所以
S6/S4=(6a1+15d)/(4a1+6d)=36/16=9/4

等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列1 ,求{an}的公比q2 ,若a1-a3=3求Sn 等比数列an的前n项和为sn 已知s1 s3 s2成等差数列 求an的公比q 求若a1-a3=3 求sn 已知等差数列an的前n项和为Sn,若S3/3-S1=1则数列an的公差为? 已知等比数列{an}的公比为q,前n项和为Sn,若S2011,S2010,S2012成等差数列,且S1=1,则an等于 设等差数列an前n项和为Sn,S2010-S1=1,S2011=? 等比数列{an}中,前n项和为sn,已知S1,S3,S2成等差数列,求{an}的公比Q.已知a1-a3=3,求sn? 等比数列{an}中,前n项和为sn,已知S1,S3,S2成等差数列,求{an}的公比Q.已知a1-a3=3,求sn?RT. 等差数列{an}=2n+1,前n项和为Sn,求1/S1+1/S2+.+1/Sn 已知Sn为等差数列an前N项和,若S1=1,S4/S2=4,则S6/S4的值为 设数列{an}的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n(c为常数,c不等于1,n属于正整数)设数列{an}的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n,且a1,a2,a3成等差数列.c=2,an=n若数列{bn}是首项为1,公比为c的等比数列,记A 已知数列{an}是等差数列,前n项和为Sn,a3=6,s3=12,求S1+S2+S3+S4+.+Sn的值 等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.①求公比q②a1-a3=3,求Sn 已知数列an是等差数列,其前n项和为Sn,a3=6,求1/S1+1/S2+...+1/Sn 已知数列an的前n项和Sn,且an>0,n属于N*,an,Sn,an^2成等差数列已知数列an的前n项和Sn,且an>0,n属于N*,,,成等差数列求an,若Tn=1/S1+1/S2+1/S3+...+1/Sn,求Tn 等比数列{an},前n项和为Sn,若S1,2S2,3S3成等差数列,求{an}的公比 已知等差数列{an}的前N项和为Sn,a1=-2/3,满足Sn+1/Sn+2=an(n大于等于2),计算S1,S2,S3,S4,猜想Sn的表达式,并用数学归纳法给予证明. 等差数列{An}的前n项和为Sn,已知S3=a2^2,且S1,S2,S4成等比数列,求{An}的通项公式 等差数列{an}的前n项和为{Sn}.已知{S3}=a2²,且{S1},{S2},{S4}成等比数列,求{an}的通项式.