设f(x)在x=0的某邻域内可导,且一介导数等于0,又lim一介导数/x=1则f(0)是否有极值?lim趋于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:38:11
设f(x)在x=0的某邻域内可导,且一介导数等于0,又lim一介导数/x=1则f(0)是否有极值?lim趋于0
xQJ@wM edqte U[bFDōME1MgNͤH {sΌn|i* ۠W!!>> ng٫ǓKAWGm=4Ag1ty)uYb? xGhl` mIMM. Ymwa/ $*nHn<9/Q5f44ZʇAAM\ l0Jj:E.nlF]$-LkIe\w:gbc

设f(x)在x=0的某邻域内可导,且一介导数等于0,又lim一介导数/x=1则f(0)是否有极值?lim趋于0
设f(x)在x=0的某邻域内可导,且一介导数等于0,又lim一介导数/x=1则f(0)是否有极值?lim趋于0

设f(x)在x=0的某邻域内可导,且一介导数等于0,又lim一介导数/x=1则f(0)是否有极值?lim趋于0
因为lim一介导数/x=1
即lim f'(x)/x=1
即lim [f'(x)-f'(0)]/(x-0)=1
由导数的定义知f'(x)在x=0处的导数(即二阶导数)f''(0)=1>0
于是f'(x)在x=0附近是增函数
于是在x=0附近,
当x>0时f'(x)>f'(0)=0,函数递增;
当x

设f(x)在x=0的某邻域内可导,且一介导数等于0,又lim一介导数/x=1则f(0)是否有极值?lim趋于0 -- -- -- -- 一个高数题-- -- -- -- -- -- -- -- -- -- -- -- -- --设函数f(x)在x=0的某邻域里有定义,且当x属于该邻域时恒有sinx -- -- -- -- 一个高数题-- -- -- -- -- -- -- -- -- -- -- -- -- --设函数f(x)在x=0的某邻域里有定义,且当x属于该邻域时恒有sinx 设f(x)在x0的某邻域内有二阶导数,且f(x0)=0,f'(x0)≠0,f''(x0)=0,则一定有 设f(x)在x=0的某邻域内有可导,且lim f'(x)=1,则f(x)在x=0有极值么,求详解 已知f(x)在x0处连续,且,f(x0)>0,试证存在x0的某邻域,在该邻域内恒有f(x)>f(x0)/2 设f(x)有二阶导数,在x=0的某去心邻域内f(x)≠0,且lim f(x)/x=0,f'(0)=4,求lim (1+f(x)/x)^(1/x) 函数f(x)在x=x0的某邻域有定义且f'(x0)=0,f''(x0)=0则在f(x)处 设函数f(X)在x=0点的某邻域内可导,f(0)=0 f'(0)=1/2 ,求lim(x->0)f(2x)/x 微积分一道题设f(x)在x=0的某个邻域内连续,且有limx→0 f(x)/xsinx=1,验证x=0为f(x)的驻点且为极小值点. 设f(x)在点x=o的某一邻域内具有连续的二阶导数,且lim(x->0)f(x)/x=0,证明:级数∑(n=1,∞)f(1/n)绝对收敛 设函数f(x)在x=0的某邻域内有定义,且f(0)=0,lim(x趋近0)f(x)/1-cosx=2,则在点x=0处,f(x)设函数f(x)在x=0的某邻域内有定义,且f(0)=0,lim(x趋近0)f(x)/1-cosx =2,则在点x=0处,f(x)A.不可导 B.可导,但f'(0)不等于0 C.取 设f(x)在x=0的某邻域内二阶可导,且lim (x->0) (sin3x/x^3 + f(x)/x^2) =0 求 f(0),f(0)一阶二阶导数,并求lim (x->0) [f(x)+3]/x^2 f(x)在x=0的某邻域内二阶可导,且lim (x->0) (sin3x/x^3 + f(x)/x^2) =0,求lim (x->0) (3/x^2 + f(x)/x^2)能不能这样做 高等数学一个概念题,设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值. f(X)在x=x0点的邻域内可导,且f'(x0)=0,lim(x~x0)f'(x)=1,则f(x)在x=x0能否取到极值? 设函数f(x)具有连续的二阶导数,且f'(0)=0,limf''(x)/|x|=1,则f(0)是f(x)的极小值其中lim是x趋向于0时的极限.一般解题思路是通过f''(x)在0的邻域内>0得出f'(x)在0的邻域内递增,再根据x0时,f'(x)>f'(0)=0, 函数在x0的某邻域U有定义 且在x0可导 对任意x f(x)小于等于f(x0) 证明f'(x0)=0函数在x0的某邻域U(x0)有定义 且在x0可导 对任意x属于U,f(x)小于等于f(x0) 证明f'(x0)=0