已知数列{an}{bn}中对于任何正整数n都有a1b1+a2b2+anbn=(3n-1)/9+4^n+1+4/9若数列{bn}是等比数列数列{an}是否为等差数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:27:49
已知数列{an}{bn}中对于任何正整数n都有a1b1+a2b2+anbn=(3n-1)/9+4^n+1+4/9若数列{bn}是等比数列数列{an}是否为等差数列
x͔J@_e8dSh"B- .KAQh ZZ/BDi#"mz}LWpɥ,DB L.dH}h+)7.u\rIviYɄW4#IKII:V$”䰄$f іv*ԺRԉHt!+~  ܮǑ.I-tld=L f &g-X0, &D6N~IBEȸ?/H\,%NLQnLF b`{VXIZ00 dc[@!$+okL!&k3x[Zq b>׹ Sw n򋳒9F|uHPGԼM[SƦRZԬOp/  F0)

已知数列{an}{bn}中对于任何正整数n都有a1b1+a2b2+anbn=(3n-1)/9+4^n+1+4/9若数列{bn}是等比数列数列{an}是否为等差数列
已知数列{an}{bn}中对于任何正整数n都有a1b1+a2b2+anbn=(3n-1)/9+4^n+1+4/9
若数列{bn}是等比数列数列{an}是否为等差数列

已知数列{an}{bn}中对于任何正整数n都有a1b1+a2b2+anbn=(3n-1)/9+4^n+1+4/9若数列{bn}是等比数列数列{an}是否为等差数列
a1b1+a2b2+……+a(n-1)b(n-1)+anbn=(3n-1)/9+4^(n+1)+4/9
a1b1+a2b2+……+a(n-1)b(n-1)=(3n-4)/9+4^n+4/9
相减:
anbn=(3n-1)/9+4^(n+1)+4/9-(3n-4)/9-4^n-4/9
=1/3+3*4^n
anbn=1/3+3*4^n
设bn=b1*q^(n-1)
anb1*q^(n-1)=1/3+3*4^n
an=(1/3+3*4^n)/[b1*q^(n-1)]=(1/b1)(1/3+3*4^n)/q^(n-1)
a(n-1)=(1/b1)[1/3+3*4^(n-1)]/q^(n-2)
an-a(n-1)=(1/b1)(1/3+3*4^n)/q^(n-1)-(1/b1)[1/3+3*4^(n-1)]/q^(n-2)
=(1/b1)(1/3+3*4^n)/q^(n-1)-(1/b1)q[1/3+3*4^(n-1)]/q^(n-1)
=(1/b1)[1/3+3*4^n-q/3-3q*4^(n-1)]/q^(n-1)
=(1/b1)[(1-q)/3+(12-3q)4^(n-1)]/q^(n-1)
若为等差则上式为常数
只要[(1-q)/3+(12-3q)4^(n-1)]/q^(n-1)为常数
不妨设[(1-q)/3+(12-3q)4^(n-1)]/q^(n-1)=k
(1-q)/3=-(12-3q)4^(n-1)+kq^(n-1)
左边为常数,只要-(12-3q)4^(n-1)+kq^(n-1)为常数,
当q=4时,
-1=k4^(n-1)
显然不成立
所以
不可为等差数列.

已知数列{an}{bn}中对于任何正整数n都有a1b1+a2b2+anbn=(3n-1)/9+4^n+1+4/9若数列{bn}是等比数列数列{an}是否为等差数列 已知数列{an}{bn},点M(1,2)An(2,an),Bn((n-1)/n,2/n)对于n为正整数,M,An,Bn在同一直线上,求{an}通项已知数列{an}{bn},点M(1,2)An(2,an),Bn((n-1)/n,2/n)对于n为正整数,M,An,Bn在同一直线上,求{an}通项 已知在数列an中,a1=1,a2=2,数列an的奇数项依次组成公差为1的等差数列,偶数项依次组成公比为2的等比数列数列bn满足bn=a(2n-1)/a2n,数列bn的前n项和为Sn1 写出数列an的通项公式2 若对于任意的正整数 已知数列{an}中,a1=3,an+1-2an=0,数列{bn}中,bn*an=(-1)^n (n是正整数) (1)求数列An的通项公式 数列{an},{bn}对于任何正整数n都有a1bn+a2bn-1+a3bn-2.+an-1b2+anb1=2^(n+1)-n-2(1)若数列{an}是首相与公差均=1的等差数列,求证:{bn}是等比数列.(2)若数列{bn}是等比数列,{an}是否是等差数列?若是求出an通向 数列{an},{bn}中,对任何正整数n都有a1b1+a2b2+a3b3+.+an-1bn-1+anbn=2的n次方(n-1)+1{bn}数列是首项为1,公比为2的等比数列,数列{an}的通项公式;数列{an}是等差数列,数列{bn}是否为等比 已知数列{an}满足①a2>0②对于任意正整数p q 都有ap*aq=2^p+q成立 若bn=(已知数列{an}满足①a2>0②对于任意正整数p q 都有ap*aq=2^p+q成立 若bn=(an+1)^2 求数列{bn}的前n项和 已知正项数列{an},{bn}满足:对任何正整数n,都有an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列,且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}通用公式设Sn=1/(a1)+1/(a2)+1/(a3)+.1/(an)如果 已知数列 an的前n项和为Sn,且对于任意的n∈正整数,恒有Sn=2an-n,设bn=log2(an+1).1.求证,数列{an+1}是等比数列2.求数列{an},{bn}的通项公式an和bn.3.若Cn=2^bn/(anXa(n+1)),证明:C1+C2+……+Cn 已知数列{An}中,A1=0,An+1=1/2-An,n∈N*1、求证:{1/An-1}是等差数列;并求{An}的通项公式2、设Bn=An.(9/10)^n,n∈N*,试证明:对于任意的正整数m、n,都有|Bn-Bm| 在数列{an}中已知a1=0,a2=6,且对于任意正整数n都有a(n+2)=5a(n+1)-6a(n)(1)令bn=a(n+1)-2an,求数列bn的通项公式(2)求an的通项公式 已知数列{An}和{Bn},对于一切正整数都有:A1Bn+A2Bn-1+A3Bn-2+.+AnB1=3^(n+1)-2n-3成立.I:如果数列An的通项公式为An=n,求证数列Bn是等比数列II:如果数列Bn是等比数列,数列An是否是等差数列,是,求其 已知数列{an},{bn}满足:a1=3,当n>=2时,a(n-1)+an=4n;对于任意的正整数n,b1+2b2+…+2^(n-1)bn=nan.设{bn...已知数列{an},{bn}满足:a1=3,当n>=2时,a(n-1)+an=4n;对于任意的正整数n,b1+2b2+…+2^(n-1)bn=nan.设{bn}的前n项和为Sn 已知数列{an}是首项为a,公差是1的等差数列,bn=1+an/an,若对于任意的正整数N,都有bn≥b8成立,则实数a的取值范围是 已知数列{an}是首项为a,公差是1的等差数列,bn=1+an/an,若对于任意的正整数N,都有bn≥b8成立,则实数a的取值范围是 设数列{An}的通项公式为An=2n-3,n属于正整数.数列{Bn}定义如下对于正整数m,Bm是使得不等式An 已知数列{an}和{bn}满足:a1=λ,an+1=2/3an+n-4,bn=(-1)^n(an-3n+21),其中λ为实数,n为正整数1.证明对于任意实数λ,数列{an}不是等比数列2.证明:当λ≠-18时,数列{bn}是等比数列第一问已经做出来了, 在公差为d(d≠0)的等差数列{an}和公比为q的等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)是否存在常数a,b,使得对于一切正整数n,都有an=logabn+b成立?若存在,