设A为一个n级实对称矩阵,且|A|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:53:48
设A为一个n级实对称矩阵,且|A|
xTAK@+sl(I! ǂtaDX*bB]BLŶi?3Lz_i@*ʲ7s{{{3/nM$38{>d*fE}56[odiZuO$쉒E' Yi[58'+"c;lXa}E}LoA;1gPsp|pg'/byt ]I޳R|4ZS:udziNxإ큒5]U

设A为一个n级实对称矩阵,且|A|
设A为一个n级实对称矩阵,且|A|

设A为一个n级实对称矩阵,且|A|
证明:由A为实对称矩阵,
则存在正交矩阵P满足 P'AP=diag(a1,a2,...,an).[P'=P^-1]
其中a1,a2,...,an是A的特征值.
又因为 |A|=a1a2...an

证明:
因为A为一个n级实对称矩阵,
因此存在正交矩阵P满足:
P'AP=diag(a1,a2,...,an). [P'=P^-1]
其中a1,a2,...,an是A的特征值.
又因为:|A|=a1a2...an<0
所以a1,a2,...,an中必有负数.
设 a1<0. (备注:可调整P的列向量的顺序实现)
令X=P(1,0,0...

全部展开

证明:
因为A为一个n级实对称矩阵,
因此存在正交矩阵P满足:
P'AP=diag(a1,a2,...,an). [P'=P^-1]
其中a1,a2,...,an是A的特征值.
又因为:|A|=a1a2...an<0
所以a1,a2,...,an中必有负数.
设 a1<0. (备注:可调整P的列向量的顺序实现)
令X=P(1,0,0,...,0)'
则有:
X'AX=[P(1,0,0,...,0)']A[P(1,0,0,...,0)']
= (1,0,0,...,0)P'AP(1,0,0,...,0)'
= (1,0,0,...,0)diag(a1,a2,...,an)(1,0,0,...,0)'
= a1 < 0.
由此可知,必存在实n维向量x不等于0使x'Ax<0

收起