能被4,7,8,9,11,13,25,125整除数的特征

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:37:42
能被4,7,8,9,11,13,25,125整除数的特征
xWnH~\E }U{ ӤLM!AD&r7IvbkKܡ%r!6`|fuCgK4܅BFϙyle`Z^1df5*}cvj3^HRHY*$2Ёcnj;91j- c;k!v@uK82Wݝ6 .^}粢%,a_d)ydgt U6F84 ?>f-w7EVܹ6{qlO*z1T?9QK^\;c{=}x$&c'|&EE%qZ6p@)rF&`C!nMgϋx,V~" ŒX^ nn~t74)?]t{O3fhoz O )v:7 H(6N 'NEVAX[P,Bc%,Ѕ78mjf*_4%EQ:Ц>r0\tIRv$8^եp1z47ث!n3(ѣ.eE^+2Z"C:-8I^O"ҬLâg9H}Fkz*4%R4n*4Y:9lкAGc_(ӎ޲[yJS hÉ9 EQgO!y8)rp'ɀ͒r%$ԖQ"?BeN0ZFOQ7Bʼ)Mƙ

能被4,7,8,9,11,13,25,125整除数的特征
能被4,7,8,9,11,13,25,125整除数的特征

能被4,7,8,9,11,13,25,125整除数的特征
(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除.
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除.
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除.
(9)若一个整数的数字和能被9整除,则这个整数能被9整除.
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除.
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除.
(25)末两位能被25整除的数.
(125)末三位能被125整除的数.

看推荐答案

9:各个数位上的数加起来是9的倍数。
11:如果是2位数,十位和个位上的数字相等。

数的整除的特征
(1)1与0的特性:
1是任何整数的约数,即对于任何整数a,总有1|a.
0是任何非零整数的倍数,a≠0,a为整数,则a|0.
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。

全部展开

数的整除的特征
(1)1与0的特性:
1是任何整数的约数,即对于任何整数a,总有1|a.
0是任何非零整数的倍数,a≠0,a为整数,则a|0.
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(6)若一个整数能被2和3整除,则这个数能被6整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。
(9)若一个整数的数字和能被9整除,则这个整数能被9整除。
(10)若一个整数的末位是0,则这个数能被10整除。
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
(12)若一个整数能被3和4整除,则这个数能被12整除。
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除

收起

若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,你在...

全部展开

若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,你在知道里输“能被4整除的数”就可以出来了

收起

(x-2)能整除3,(x-4)能整除5,(x-6)能整除7,(x-8)能整除9,x能整除11,试求x 能被4,7,8,9,11,13,25,125整除数的特征 能被4,7,8,9,11,13,25,125整除的方法 分别说出能被4,7,8,9,11,13,25,125整除的方法 能被3、4、7、8、9、11、13、25整除的整数的特征是? 数学问题(能被某数整除得数的特征)能被7整除得数的特征能被11整除得数的特征能被13整除得数的特征能被4整除得数的特征能被8整除得数的特征能被125整除得数的特征能被36整除得数的特 一个数减去2能被3整除,减去4能被5整除,减去6能被7整除,减去8能被9整除,求这个数? 谢谢,谁知道啊!这个数能被11整除. 能被25、8、125、7、9、11、13的整除的特征 能被2,3,5,7,9,11,13,4,25整除的特征? 能被6 7 9 11 4 25 8 125整除数的特征? 【一道数学题】求过程和结果一个三位数,用它加1能被2整除,加2能被3除,加3能被4整除,加4能被5整除,加5能被6整除,加6能被7整除,加7能被8整除.求这个三位数是多少?请说出充分的理由! 能被4、7、8、11、13整除的数有哪些?最好能帮我把特征也说一下. 一个整数能被11整除,如果加1能被3,5,7,9 整除,这个数是多少 一个两位数,将其个位数字与十位数字对调,则所得新数和原数的差一定( )A.能被8整除 B.能被9整除 C能被1整除 D.能被11整除 就什么数+5能背9整除,+6能背10整除,+7能被11整除,+8能被12整除?(数学数上的,这样啦,初一数学补充习题上面的(上册) 2/3+(4/7+1/2)*7/25能简便吗?要能怎么算,要不能怎么算? 一个数减去1能被2整除,减去2能被5整除,减去3能被7整除,加上4能被9整除,那么这个数最小是多少? 能被3,6,7,8,9,11,25,整除的数的特征