设f(x)=ax^5+bx^3+cx-5(a、b、c是常数),且f(-7)=7,则,f(7)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:48:15
x){n_FmbEvREvrF$ N~6c;Mݠdǔ4
]sM[s3u4L"}/K`ͺqIqƺ溦P 6HP,
c=gxڵ`1]C[smG[$ف 8)
设f(x)=ax^5+bx^3+cx-5(a、b、c是常数),且f(-7)=7,则,f(7)=
设f(x)=ax^5+bx^3+cx-5(a、b、c是常数),且f(-7)=7,则,f(7)=
设f(x)=ax^5+bx^3+cx-5(a、b、c是常数),且f(-7)=7,则,f(7)=
f(-7)=7
即-a7^5-b7^3-c7-5=7
a7^5+b7^3+c7-5=f(7)
两式相加得
-10=7+f(7)
∴f(7)=-17
设f(x)=ax^5+bx^3+cx-5(a、b、c是常数),且f(-7)=7,则,f(7)=
设f(x)=ax^5+bx^3+cx+2,若f(-3)=28,则f(3)等于多少?
设f(x)=ax^7+bx^3+cx-5,其中abc为常数,已知f(-7)=7,则f(7)等于
设函数f(x)=ax^5+bx^3+cx,其中a,b,c为常数.若f(-7)=7,则f(7)的值为多少
设5不整除d,f(x)=ax^3+bx^2+cx+d,g(x)=dx^3+cx^2+bx+a,证明:若存在m,使得5|f(m),则存在n使得5|g(n)
设函数f(x)=1/3ax^3+bx^2+cx(a
设三次函数f(x)=ax^3+bx^2+cx+d(a
设f(x)=ax^3+bx^2+cx+d,(a
设三次函数f(x)=ax^3+bx^2+cx+d(a
设f(x)=ax^3+bx^2+cx+d,(a
设函数f(x)=1/3*ax;+bx;+cx(a
设(x-1)^5=ax^5+bx^4+cx^3+dx^2+ex+f,则a-b+c-d+e-f=?
(2x-1)^5=ax^5+bx^4+cx^3+dx^2+ex+f
已知 f(x)=x^5+2x-x+3,且f(2)=7,求f(-2).还有,设函数f(x)=ax^5=bx^3+cx,若f(2)=15,则f(-2)=?
已知函数F(x)=ax^3+bx^2+cx(
设(2x-1)^5=ax^5+bx^4+cx^3+dx^2+ex+f求a+c+e的值
已知函数f(x)=ax^5+bx^3+cx+3,若f(5)=8,求f(-5)
f(x)=ax{5次方}+bx{3次方}+cx+5,且f(-3)=3,求f(3)