在三棱锥P-ABC中,△PAC和△PBC是边长为√2的等边三角形,AB=2,O,D分别是AB,PB的中点(1)求证:平面PAB⊥平面ABC(2)求三棱锥P-ABC的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:23:29
在三棱锥P-ABC中,△PAC和△PBC是边长为√2的等边三角形,AB=2,O,D分别是AB,PB的中点(1)求证:平面PAB⊥平面ABC(2)求三棱锥P-ABC的体积
xS]O`+Яutf%i;-~ll*2+D%0` 8?evWv7&lyiEV%cۭ/.^6V˕%^D ^!r=ֳgVfPʸ#t džbQdN s x:gz~l{w-??^Ar}mSTQs j 'NQ$֧bwّ@@})R\[+m԰ʵ%FF8u'FBS݊^w .dh!hD Tr`#qRd52DiaQ Gd,2Zfr,j= 32b AJX&b){i 2PS jʲa9SY`0cAiESvFo?K{n ݪ̪z㤸K^! hm4:{b@j3vv>9e|N? Φ VVjIU9 `xI~Ñ8J)A~y)l׷m$mYj;boUqhP~tkg 2jU>", '"JD!5񛚹!EËW37 Bį//åmse2^`Z]" E9Hz\tmt~+۹F0`.VW{QR_ǍPvf*xfع<0f:o3gLW]tZ!4WxU/`kz4*^hU"LMu8{JQsy

在三棱锥P-ABC中,△PAC和△PBC是边长为√2的等边三角形,AB=2,O,D分别是AB,PB的中点(1)求证:平面PAB⊥平面ABC(2)求三棱锥P-ABC的体积
在三棱锥P-ABC中,△PAC和△PBC是边长为√2的等边三角形,AB=2,O,D分别是AB,PB的中点
(1)求证:平面PAB⊥平面ABC
(2)求三棱锥P-ABC的体积

在三棱锥P-ABC中,△PAC和△PBC是边长为√2的等边三角形,AB=2,O,D分别是AB,PB的中点(1)求证:平面PAB⊥平面ABC(2)求三棱锥P-ABC的体积
连接po与co
角APB与角ACB均为直角,(有数量关系得)
故po垂直ab co垂直ab 角cod为直角,(有数量关系得)
故co垂直面pab
故平面PAB⊥平面ABC
v=1/3sh
三角形abc面积为1(直角三角形√2*√2/2=1)
高为po=1
故面积为1/3
方法是这样的,不规范的地方自己整理一下吧,电脑不好输入!

∵△ABC是等边三角形
∴∠BAE=∠ACD=60°,AB=AC
∵AE=CD
∴△BAE≌△ACD(SAS)
∴∠ABE=∠CAD
∴∠BPD=∠BAP+∠ABE=∠BAP+∠CAD=∠BAC=60°
∵BQ⊥AD
∴∠PBQ=90°-∠BPD=30°
∴BP=2PQ(直角三角形中30°所对的边是斜边的一半)

连接po,oc由已知边可知,poc为等腰直角三角形,po ⊥oc po ⊥AB po ⊥ABC,又因为po包含于平面PAB,所以平面PAB⊥平面ABC

三棱锥P-ABC中,PA⊥平面PBC,平面PAC⊥平面PBC,问:△ABC是否为直角三角形 在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°(1)证明AB⊥PC(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC体积 在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.(1)证明AB⊥PC (2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC体积 如图在三棱锥P-ABC中,三角形PAB是等边三角形,角PAC=角PBC=90度.(1)证:AB垂直PC (2)若PC=4,且平面PAC垂直平面PBC,求三棱锥P-ABC体积解:(1)证明:因为△PAB是等边三角形,∠PAC=∠PBC=90°,所以Rt△PBC≌R 在三棱锥P-ABCD中,已知△ABC是等腰直角三角形,角ABC=90°,△PAC是直角三角形,角PAC=90°,平面PAC⊥平面ABC.求证:平面PAB⊥平面PBC 如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°请证明:AB⊥PC 在三棱锥P-ABC中,△PAB是等边三角形,角PAC=角PBC=90°(1)证明AB⊥PC(2)若PC=4,且平面PAC且平面PAC⊥平面PBC,求三棱锥P-ABC的体积 在三棱锥P-ABC中,△PAC和△PBC是边长为√2的等边三角形,AB=2,O,D分别是AB,PB的中点1)求证:平面PAB⊥平面ABC(2)求三棱锥P-ABC的体积(3)求证;OD平行于面PAC 如图,在三棱锥P-ABC中,以知△ABC是等腰直角三角形,∠ABC=90度,△PAC是直角三角形,∠PAC=90度,∠ACP=30度,平面PAC⊥平面PBC.(1)求证:平面PAB⊥平面PBC;(2)若PC=2,求△PBC的面积 在三棱锥P-ABC中,三角形PAC和三角形PBC都是边长为根号2的等边三角形AB=2,OD分别是AB,PB的中点,求证平面PAB垂直平面ABC还有求三棱锥A-PBC的体积 如图在三棱锥P-ABC中,三角形PAB是等边三角形,角PAC=角PBC=90度.(1)证:AB垂直PC (2)若PC=4,且平面PAC垂直平面PBC,求三棱锥P-ABC体积 在三棱锥P-ABC中,三角形PAB是等边三角形,∠PAC=∠PBC=90*(1)证明:AB⊥PC(2)若PC=4,且平面PAC垂直平面PBC,求三棱锥P-ABC的体积. 在三棱锥P-ABC中,△PAC和△PBC是边长为√2的等边三角形,AB=2,O,D分别是AB,PB的中点(1)求证:平面PAB⊥平面ABC(2)求三棱锥P-ABC的体积 在三棱锥中,△PAC和△PBC是边长为根号2的等边三角形,A=2,O,D分别是AB,PB的中线,求OD平行平面PAC;平面PAB求OD平行平面PAC;平面PAB垂直平面ABC;求三棱锥的体积 三棱锥P-ABC中,M,N分别是△ABC和△PBC的重心,求证A,M,N,P必在同一平面 在三棱锥P-ABC中,面PAB垂直于面ABC,AB垂直于BC,AP垂直于PB,求证面PAC垂直于面PBC 在三棱锥P-ABC中,点D.E.F分别是🔼PAB.🔼PBC.🔼PAC的重心.求证:平面DEF//平面ABC 如图1,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就�如图1,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么