设f(x)二阶连续可微,且使曲线积分∫[f(x)+x]ydx+[f'(x)+sinx]dy与路径无关,求函数f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:29:45
xQN@MKa!) $*A"iI!l| >!H}$Hy_pfZV}`9ssbM
7k}L
xp'xӇUH}oVJY
设f(x)二阶连续可微,且使曲线积分∫[f(x)+x]ydx+[f'(x)+sinx]dy与路径无关,求函数f(x)
设f(x)二阶连续可微,且使曲线积分∫[f(x)+x]ydx+[f'(x)+sinx]dy与路径无关,求函数f(x)
设f(x)二阶连续可微,且使曲线积分∫[f(x)+x]ydx+[f'(x)+sinx]dy与路径无关,求函数f(x)
曲线积分∫[f(x)+x]ydx+[f'(x)+sinx]dy与路径无关,那么:
{[f(x)+x]y}‘y=[f'(x)+sinx]'x
f''(x)+cosx=f(x)+x
f''(x)-f(x)=x-cosx
f''(x)-f(x)=0的通解f(x)=C1e^x+C2e^(-x)
设特解y=Ax+Bcosx
y'=A-Bsinx
y''=-Bcosx
-Bcosx-Ax-Bcosx=x-cosx
A=-1 B=1/2
f(x)=C1e^x+C2e^(-x)-x+(1/2)cosx
曲线积分与路径无关的充要条件是P对y的偏导=Q对x的偏导。
P=(f(x)+x)y Q=f'(x)+sinx
所以有
f(x)+x=f"(x)+cosx
解 这个方程。
设f(x)二阶连续可微,且使曲线积分∫[f(x)+x]ydx+[f'(x)+sinx]dy与路径无关,求函数f(x)
设φ(x)二阶连续可导,且使曲面积分∫Lφ'(x)(ydx+xdy)与路径无关,求φ(x)
设函数f(x)具有连续导数,且曲线积分 ∫(sinx-f(x))y/xdx+f(x)dy与路径无关,f(派)=1,则f(x)=?
设f(x),g(x)具有二阶连续导数,曲线积分∮(下c)[y^2f(x)+2ye^x+2yg(x)]dx+2[yg(x)+f(x)]dy=0其中C为平面上任一简单封闭曲线(1)求f(x),g(x)使f(0)=g(0)=0(2)计算沿任一条曲线从(0,0)到(1,1)的积分
设曲线积分……与路径无关,其中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于()详情请见下图
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|
设函数f(x)具有一阶连续导数 且f(0)=0 若曲线积分∫[f(x)-e^x]sinydx-f(x)cosydy与路径无关 则f(x)的表达式为多少?杜绝复制粘贴 网上已经查过了 齐次微分知识我还没有学!请用曲线积分这章的知识帮
设函数f(x)具有一阶连续导数 且f(0)=0 若曲线积分∫[f(x)-e^x]sinydx-f(x)cosydy与路径无关 则f(x)的表达式为多少?杜绝复制粘贴 网上已经查过了 齐次微分知识我还没有学!请用曲线积分这章的知识帮
有关大学定积分的的问题设f(x)在[0,2]上具有二阶的连续导数,且f(1)=0证明存在ζ∈[0,2]使(0→2)∫f(x)dx=1/3f″(ζ)如图的红框内,为什么等号后边可以没有f′(1)(x-1)
设曲线积分∫yf(x)dx+[2xf(x)-x^2]dy在右半平面(x>o)内与路径无关,其中f(x)可导,且f(1)=1,求f(x)
高数拐点问题设g(x)二阶连续可导且g(0)=0,g’(0)不等于0.f(x)=(1-cosx)g(x),证明曲线y=f(x)在x=0处必出现拐点.
积分应用 设f (x)在[0,1]上具有二阶连续导数,若f ( π ) = 2,∫ [ f (x)+ f (x)的二阶导数]sin xdx =5,求f (0) ..
设f(x)在(0,a)上二次可微,且f(0)=0,f的二阶导数
张恭庆泛函中一道题设f(x)二阶连续可微,f(a)=f(b)=f'(b)=0,f'(a)=1,证:|f''(x)|^2在[a,b]上的积分大于或等于4/(b-a).
设f(x)连续且满足f(x)=-cosx+∫f(t)dt,求f(x).注:积分上限为x下限为0
【高数】定积分 设f(x)连续,f(0)=1,则曲线y=∫(上限x,下限0) f(x)dx 在(0【高数】定积分设f(x)连续,f(0)=1,则曲线y=∫(上限x,下限0) f(x)dx 在(0,0)处的切线方程是?
大一高数几道题,快考试了,1,过点(2,1,3)且平行于平面x+2y-3z-2=0的平面方程是?2,设L是上半圆周y=根号下(r∧2-x∧2)则曲线积分为?3,设z=x∧3sin5y,f具有二阶连续偏导数,求φz/φx,﹙φ∧
设函数f(x)具有二阶连续导数,且f(x)不等于0.由lagrange公式有证明: