证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:15:05
xA
PE7$8~ j*2J+IX1Cq"ZT`u3wm]晁t7vO9-M$څ`zEN
5<*#u(TO&2
^Hc^Y,X+
)Dg!us68ǚ+TŌ
证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0
证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0
证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0
如果你学过若当标准形这题好办
若没学过就没招了
证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0
证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0
A为n阶方阵,证明:若存在正整数k使A^k=0,则A的特征值只能是0
关于特征值的一道证明题!证明:若n阶方阵A满足A^k=0(k是正整数),则A的特征值必为零.
设n阶方阵A的元素全为1,则A的n个特征值是?
设n阶方阵A的n个特征值互异,n阶方阵B与A有相同的特征值,证明:A与B是相似的?
设n阶方阵A满足A²=2A.证明A的特征值只能是0或2
如果n阶方阵A的n个特征值全为0,则A一定是零矩阵吗?为什么呢
设λ 是n阶方阵A的特征值,证明:Α+2E的特征值为λ+2.
A是n阶举证,A^2=0,证明他的特征值全是0
A是n阶方阵,若存在n阶方阵B不等于0,使得AB=0,证明A的秩小于n
设λ=0是n阶方阵A的一个特征值,则|A|=?
n阶方阵A满足A^2=E.证明A的特征值是1或-1;并且,若1不是A的特征值,则A=E.(抱歉,后半个证明想不出来
证明:设A为n阶方阵|A-A^2|=0,则0与1至少有一个是A的特征值
设A为n阶方阵,证明:det(E-A*A)=0,则1或-1至少有一个是A的特征值.
若n阶方阵A的特征值为1或0,则A^2=A,
若n阶方阵A的行向量组线性相关,则0为什么一定是A的一个特征值?
证明:设n阶方阵A满足A^2=A,证明A的特征值为1或0