求定积分 ∫(1,e) [lnx/x^3]dx 求过程谢谢诶

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:41:54
求定积分 ∫(1,e) [lnx/x^3]dx 求过程谢谢诶
xRQKP+ ּMpGDo!R/{KDғ)IbA/'Bz =;,c=s҇3X+R`;gd-[{̓cW*)eGkyg j5gI#:Aw%Aw(1h뉤ӦuqG b#vъRv"" ?W)@\=Č[^/EÚM^d(yݟJɎF#IN:`9n;0, 6aJ8T5]Bto3!a{.X{aΟ/*$E?jcr*=. X ޕФ(:\sRytHH_xqi

求定积分 ∫(1,e) [lnx/x^3]dx 求过程谢谢诶
求定积分 ∫(1,e) [lnx/x^3]dx 求过程谢谢诶

求定积分 ∫(1,e) [lnx/x^3]dx 求过程谢谢诶
先求出被积函数的不定积分.
∫lnx/x³dx=-1/3∫lnxd(1/x²)
应用分部积分法可得
∫lnxd(1/x²)=lnx/x²-∫1/x²d(lnx)
=lnx/x²-∫1/x³dx
=lnx/x²+1/(2x²)+c
故所求定积分为
=-1/3(3/(2e²)-1/2)
=1/6-1/(2e²)

先求不定积分部分:
∫ lnxdx/(x^3)
=-1/2∫ lnxd[x^(-2)]
=-lnx*x^(-2)/2+1/2∫ x^(-2)d(lnx) 此步骤为分步积分法。
=-lnx*x^(-2)/2+1/2∫ x^(-3)dx
=-lnx*x^(-2)/2-x^(-2)/4
再代入数值,可求出定积分,则有:
∫(1,e) [lnx/x^3]dx=[1+3e^(-2)]/4.