若函数y=f(x)的倒函数在区间【a,b】上是增函数,则函数y=f(x)在区间【a,b】上的图

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:33:03
若函数y=f(x)的倒函数在区间【a,b】上是增函数,则函数y=f(x)在区间【a,b】上的图
x){ѽigS7TڦiTh>aDO{vqÄD z6cE tvD֌Ulf~ }}q';ԲOvEF<]rON|qUOo|>e Ovt?F 10n“w|ѦbC#dze

若函数y=f(x)的倒函数在区间【a,b】上是增函数,则函数y=f(x)在区间【a,b】上的图
若函数y=f(x)的倒函数在区间【a,b】上是增函数,则函数y=f(x)在区间【a,b】上的图

若函数y=f(x)的倒函数在区间【a,b】上是增函数,则函数y=f(x)在区间【a,b】上的图
减函数,并且和原函数关于Y=X对称,具体图象自己画一下吧

减函数 不给分 谁给你图

若函数y=f(x)的倒函数在区间【a,b】上是增函数,则函数y=f(x)在区间【a,b】上的图 若y=f(x)在区间(a,b)上是增函数,则下列结论正确的是A.y=1/f(x)在区间(a,b)上是减函数B.y=-f(x)在区间(a,b)上是减函数C.y=|f(x)|²在区间(a,b)上是增函数D.y=|f(x)|在区间(a,b)上是增函数这道题答案是B正 若函数y=f(x)在[a,b]上是单调函数,则使得y=f(x+3)必为单调函数的区间是 2.4.1函数的零点 函数零点判断若函数y=f(x)在区间【a,b】上是一条--------的曲线,且有---------成立,那么函数y=f(x)在区间(a,b)内有零点 若函数y=f(x)的导函数在区间【a,b】上是增函数,则函数y=f(x)在区间【a,b】上的图像可能是是哪个啊 求详解 (手工绘图 若函数y=f(x)的导函数在区间[a,b]上是增函数则函数y=f(x)在区间[a,b]上的图像可能是 若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图像可 6.若y=f(x)在区间(a,b)上是减函数,则下列结论正确的是A.y=1/f(x)在区间(a,b)上是减函数B.y=-f(x)在区间(a,b)上是增函数C.y=|f(x)|^2在区间(a,b)上是增函数D.y=|f(x)|在区间(a,b)上是增函 6.若y=f(x)在区间(a,b)上是减函数,则下列结论正确的是A.y=1/f(x)在区间(a,b)上是减函数B.y=-f(x)在区间(a,b)上是增函数C.y=|f(x)|^2在区间(a,b)上是增函数D.y=|f(x)|在区间(a,b)上是增函 “若函数u=g(x)在区间A上是增函数,且在A上的值域为B,函数y=f(u)在区间B上是减函数,则复合函数y=f[g(x)]在区间A上是减函数”中且在A上的值域为B.请用一年级小孩能听懂的方法解释嘻嘻, 已知奇函数f(x)在区间[-b,-a] (b>a>0)上是减函数,且f(x)>0,试问函数y=|f(x)|在区间[a,b]上是增函数还是减函数?证明你的结论 函数y=f(X)的图像在区间[a,b]上是连续不断的,且f(a)*f(b) 一道高中函数单调性数学题6.若y=f(x)在区间(a,b)上是减函数,则下列结论正确的是A.y=1/f(x)在区间(a,b)上是减函数B.y=-f(x)在区间(a,b)上是增函数C.y=|f(x)|^2在区间(a,b)上是增函数D.y 怎么判断函数f(x)=(x²+2x-3)²的单调性?A.y=f(x)在区间[-1,1]上是增函数 B.y=f(x)在区间(-无穷,-1]上是增函数C.y=f(x)在区间[-1,1]上是减函数D.y=f(x)在区间(-无穷,-1]上是减函数 函数零点定义问题若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号不同,即f(a)·f(b) 函数函数 (3 12:6:15)对于区间〔a,b〕,若函数F(x)同时满足下列两个条件:1.函数Y=F(X)在〔a,b〕上是单调函数;2.函数Y=F(X),X∈〔a,b〕的值域是〔a,b〕,则称区间〔a,b〕为函数Y=F(X)的保值区间问:函 在R上定义的函数f(x)是偶函数,且f(x)=f(2-x),若f(x)在区间[1,2]上是减函数,则f(x) A,在区间[-2,-1]上是增函数,在区间[3,4]上是增函数B,在区间[-2,-1]上是增函数,在区间[3,4]上是减函数C,在区间[-2,-1]上是 关于函数f(x)=lg[(x^2+1)/|x|] (x不等于0,x属于R)A.函数y=f(x)的图象关于y轴对称B.在区间(负无穷大,0)上,函数f(x)是减函数C.函数f(x)的最小值为lg2D.在区间(1,正无穷大)上,函数f(x)是增函数其中正确