一直抛物线C:y^2=4x 点M(1,0)过M的直线l与C相交于A B两点 直线l的斜率为1 求以AB为直径的圆的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:45:55
一直抛物线C:y^2=4x 点M(1,0)过M的直线l与C相交于A B两点 直线l的斜率为1 求以AB为直径的圆的方程
x͐N0_ţ& v"G* `dJ_t,F$7Dͻz4*=^ >WC)8̍oM1'IS,P@<Ȍ|#]ꗵLf՟c&~@ZO5+>v{DzEAo׌TϏaa~l ӥ6V;=3O5LL; ;-ŎI%dp{8.( +hkmiD9Dc($\Գ[_zwW

一直抛物线C:y^2=4x 点M(1,0)过M的直线l与C相交于A B两点 直线l的斜率为1 求以AB为直径的圆的方程
一直抛物线C:y^2=4x 点M(1,0)过M的直线l与C相交于A B两点 直线l的斜率为1 求以AB为直径的圆的方程

一直抛物线C:y^2=4x 点M(1,0)过M的直线l与C相交于A B两点 直线l的斜率为1 求以AB为直径的圆的方程
I:y=x-1 (带k=1和点(1,0))
方程:y=x-1
y^2=4x
==》((3+2√ 2),(2+2√ 2)),((3-2√ 2),(2-2√ 2))
圆心:(3,2)
半径:√((4√2)^2+(4√2)^2)/2=4
圆:(x-3)^2+(y-2)^2=4^2=16

一直抛物线C:y^2=4x 点M(1,0)过M的直线l与C相交于A B两点 直线l的斜率为1 求以AB为直径的圆的方程 如图,在平面直角坐标系XOY中,一抛物线的顶点坐标是(0,1),且过点(-2,2),平行四边形OABC的顶点A,B在此抛物线上,AB与Y轴相交于点M.一直点C的坐标是(-4,0)点Q(x,y)是抛物线上任意一点以求得解析 以知:抛物线y=x的平方-2x-m(m大于0)与y轴交与C点,C点关于抛物线对称轴的对称点为C’点.(1)求抛物线的对称轴及C,C’点的坐标(可用含m的代数式表示)(2)如果点Q在抛物线的对称轴上,点P 点M(4,0)以点M为圆心、2为半径的圆与x轴交与点A,B,已知抛物线y=1/6x^2+bx+c过点A和B,与y轴交与点C点Q(8,m)在抛物线y=1/6x^2+bx+c上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值CE是过点C的 已知抛物线y=x^2+mx-1/4m^2(m>0)与x轴交于AB两点求抛物线与y轴交于点C,若∠ACB=90度,求m的值 一直开口向上的抛物线y=ax²-4x+3a²经过点(1,0);与x轴的另一个交点为b,抛物线的顶点为c (1)求a的值和抛物线的解析式 (2)试判断△abc的形状 (3)若直线y=m与y=ax²-4x+3a²的绝 已知抛物线y^2=4x,过点M(-1,0)作一条直线l与抛物线相交于不同的两点A,B,点A关于x轴对称点为C,求证直线BC过定点 已知抛物线y=x^2;+bx+c经过点(1,-5)和(-2,4) (1)求这条抛物线的解析式(2)设此抛物线与直线y=x相交于A,B(点B在点A的右侧),平行于y轴的直线x=m(0<5<根号5+1)与抛物线交于点M,与直线y=x交于点N,交 已知抛物线y=ax^2+bx+c与x轴交于点A(-2,0),B(8,0),与y轴交于点C(0,-4),直线y=x+m与抛物线交与点D,E(D在E左侧),与抛物线的对称轴交于F(1)求抛物线的解析式(2)当m=2时,求角DCF的大小(3)若在直线y=x+m下 求过点M(0,1)且与抛物线C:y^2=4x仅有一个公共点的直线方程我穷没财富. 如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交与点A、B.已知抛物线y=1/6x²+bx+c上如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交与点A、B.已知抛物线y=1/6x²+bx+c过点A和点B,与y轴交 如图,抛物线y=-x^2+bx+c过点A(4,0)B(1,3)(1)求该抛物线的解析式,并写出该抛物线的对称轴和顶点坐标(2)记该抛物线的对称轴为直线L,设抛物线上的点P(M,N)在第四象限,点P关于直线L的对称点为 如图所示,已知直线y=1/2x与抛物线y=ax2+b(a不等于0)交于A(-4,-2),B(6,3)抛物线与y轴的交点为C.(1)求这个抛物线的解析式;(2)在抛物线上存在点M,使△MAB是以AB为底边的等腰三角形,求点M的坐标;(3) 如图所示,已知直线y=1 /2x与抛物线y=ax2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交点为C.(1)求这个抛物线的解析式;(2)在抛物线上存在点M,是△MAB是以AAB为底边的等腰三角形,求点M的坐标;(3)在 如图所示,已知直线y=2分之1x与抛物线y=ax²+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交点为c(1)求这个抛物线的解析式;(2)在抛物线上存在点M,是△MAB是以AB为底边的等腰三角形,求点M的坐标;( 已知抛物线y=x^2+bx+c经过点(1,-5)和(-2,4) (1)求这条抛物线的解析式 (2)设此抛物线与直线y=x相较于点A,B(点B在点A的右侧),平行于y轴的直线x=m(0 1.已知抛物线y=x方+bx+c经过点(1,-5)和(-2,4)(1)求这条抛物线的解析式.(2)设此抛物线与直线y=x相交于点A.B(点B在点A的右侧),平行于y轴的直线x=m(0 如图,已知抛物线的方程C1:y=- (x+2)(x-m)(m>0)与x 轴相交于 点B、C,与y 轴相交于点E如图,已知抛物线的方程C1:y=- (x+2)(x-m)(m>0)与x 轴相交于点B、C,与y 轴相交于点E,且点B 在点C 的左侧.(1)若抛物线C1