对于数列xn.若x2k-1 极限是a.x2k极限是a,证明xn极限是a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:39:49
对于数列xn.若x2k-1 极限是a.x2k极限是a,证明xn极限是a
x){~]}Ϧnx1"OE l]Cg_ΜlD=b}}y!"}_`gC=="tݬ';;}ӟz{ul @쨘

对于数列xn.若x2k-1 极限是a.x2k极限是a,证明xn极限是a
对于数列xn.若x2k-1 极限是a.x2k极限是a,证明xn极限是a

对于数列xn.若x2k-1 极限是a.x2k极限是a,证明xn极限是a
用极限定义便可得出结论

对于数列xn.若x2k-1 极限是a.x2k极限是a,证明xn极限是a 有关数列极限的证明对于数列{Xn},若X2k-1(该数列的奇数项)→a(k→∞),X2k→a(k→∞),证明:Xn→a(n→∞). 高数数列极限问题对于数列{Xn},若X2k-1趋近于a(k趋近于无穷),X2k趋近于a(k趋近于无穷),证明:Xn趋近于a(n趋近于无穷) 对于数列Xn,若X2k-1→ a (k→∞),X2k→ a (k→∞),证明:Xn→ a (n→∞)微积分的题目 一道高数题,解题过程看不懂,对于数列{Xn},若X2n-1趋向于a(k趋向于无穷大),X2k趋向a(k趋向无穷大),证明Xn趋向a(n趋向无穷大) 证:对于任意小的实数ε,由X(2k-1)的极限是a,存在正整数K1,当k>K1 对于数列Xn,若X2k-1→ a (k→∞),X2k→ a (k→∞) 证明:Xn→ a (n→∞)我不是要解题方法,我要思路.这个思路是证明两者的e的大小然后证明|xn-a|也小于e还是怎么的现在看到两种方法:X(2k-1)→ a ( 两个高数问题中数列极限的问题,要用定义证明,(1)设数列{Xn}有界 ,又lim(n->∞)Yn=0,证明:lim(n->∞)XnYn=0.(2)对于数列{Xn},若X2k-1->a(k->∞),x2k->a(k->∞),证明:Xn->a(n->∞). 收敛函数与子数列问题对于数列{Xn},若X2k-1趋近于a(k趋近于正无穷),X2k-趋近于a(k趋近于正无穷),证明:Xn趋近于a(n趋近于正无穷) 对于数列{Xn},若X(2k-1)的极限=a,且 X(2k)的极限为a,a为常数,证明Xn的极限是a.2k-1 和 2k 都是数列的下标,也就是这个数列的奇数列的极限是a,偶数列的极限是a,证明原数列的极限是a. 数列的极限对于数列{Xn},Xn的极限是a,求证X2n的极限是a,X2n+1的极限是a 对于数列{Xn},若X2n-1趋向于a(k趋向于无穷大),X2k趋向a(k趋向无穷大),证明Xn趋向a(n趋向无穷大) 数列xn由下列条件确定:x1=a>0,x(n+1)=1/2(xn+2/xn),n∈N.若数列xn的极限存在且大于0,求lim xn答案是√a,为什么? 高数数列极限题对于数列{Xn},若X(2k-1)的极限=a,且 X(2k)的极限为a,a为常数,证明Xn的极限是a.用极限的定义证明:对任意ε>0,存在K1∈N使得k>K1时总有│x(2k-1)-a│<ε对任意ε>0,存在K2∈N使得k> 函数极限与数列极限的问题f(X)在(-∞,+∞)内单调有界,{Xn}为数列函数,下列命题正确的是:A 若{Xn}收敛,则{f(Xn)}收敛B 若{Xn}单调,则{f(Xn)}收敛C 若{f(Xn)}收敛,则{Xn}收敛D 若{f(Xn)}单调,则{Xn}收敛这 数列{Xn}中,x1=a>0,xn+1=1/2(xn+a/xn).若次数列的极限存在,且大于0,求这个极限. 证明:若数列Xn的极限为a,则对于任一自然数K,也有数列Xn+k的极限为a. 对于收敛数列的保号性请问:对于收敛数列{xn},极限为a,若a>0,那个任意正值若取2a,计算出的xn符号不就存在为负的可能?在问题中“那个任意正值”可设为d,指的是1xn-a10,存在正整数N>O,当n>N时有 数列{Xn}中,X1>0,a>0,Xn+1=1/2(Xn+a/Xn).判断数列{Xn}的极限是否存在;若存在,求x->无穷时数列的极限PS主要证明数列递减?(关键:为什么a/Xn²≤1)