若向量e1,向量e2是平面内所有向量的一组基底,且实数k1,k2,使k1向量e1+k2向量e2=向量0,为什么得出k1=k2=0?不可以k1向量e1与k2向量e2互为相反数吗?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:58:16
xՑN@MJ{n˳hi4J 1&˶З+pm27c:&m
OuW"Nq1x@0:ȑ { 5,oÎTђzWv9-jX6)d
aؓp͓sP9y{\{\rc B$"mX鏈Mp_E|,*c`@[6y@R&i2yNRva7̮o\ј
若向量e1,向量e2是平面内所有向量的一组基底,且实数k1,k2,使k1向量e1+k2向量e2=向量0,为什么得出k1=k2=0?不可以k1向量e1与k2向量e2互为相反数吗?
若向量e1,向量e2是平面内所有向量的一组基底,且实数k1,k2,使k1向量e1+k2向量e2=向量0,为什么得出k1=k2=0?不可以k1向量e1与k2向量e2互为相反数吗?
若向量e1,向量e2是平面内所有向量的一组基底,且实数k1,k2,使k1向量e1+k2向量e2=向量0,为什么得出k1=k2=0?不可以k1向量e1与k2向量e2互为相反数吗?
k1向量e1与k2向量e2互为相反数
这个是不会的,e1,e2是基底说明e1,e2线性无关(好像高中说是不共线),如果相反数的话则线性相关(共线),所以k1=k2=0
向量e1,e2是平面内不共线的两向量,已知向量AB=e1+ke2,向量CB=2e1+e2,向量CD=3e1-e2,若A,B,D三点共线则k
若向量e1,向量e2是平面内所有向量的一组基底,且实数k1,k2,使k1向量e1+k2向量e2=向量0,为什么得出k1=k2=0?不可以k1向量e1与k2向量e2互为相反数吗?
设e1 ,e2 是平面内一组基向量,且向量a=向量e1 2向量e2,向量b=-向量e1 向量e2设e1 ,e2 是平面内一组基向量,且向量a=向量e1 2向量e2,向量b=-向量e1 向量e2,则向量e1 e2可以表示为另一组基向量a,b的线性
已知向量e1,向量e2是平面内两个不共线的非零向量,向量AB=2向量e1+向量e2,向量BE=向量-e1+入向量e2,向量EC=-2向量e1+向量e2,且A,E,C三点共线①求实数入的值②若向量e1=(2,1),向量e2=(2,-2)求向量BC
已知向量e1,e2是平面内不共线的两个向量.已知向量e1,e2是平面内不共线的两个向量,向量AB=e1-ke2,向量CB=2e1+e2,向量CD=3e1-e2,若A,B,D三点共线,则k的值是?注:此处向量符号省掉了
若e1,e2是表示平面内所有向量的一组基底则下面各组向量中不能作为基底的是(1)e1-e2和1/2e1+1/2e2 (2)1/2e1-1/3e2和3e1-2e2 (3)e1+1/3e2和3e1+e2
设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ).A.e1+e2和e1-e2 B.3e1-2e2和4e2-6e1 C.e1+2e2和e2+2e1 D.e2和e1+e2
若向量e1、向量e2是平面内夹角为60°的两个单位向量,向量a=2e1+e2,b=-3e1+2e2,则a与b夹角为?
平面向量基本定理 的证明如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2.这里{e1、e2}称为这一平面内所有向量的一组基底,
已知e1,e2为平面内一组基底,向量AB=3(e1+e2),向量CB=e2-e1,向量CD=2e1+e2则四点A B C D中共线的是?
设e1 e2是平面内的一组基地,如果向量AB=3e1-2e2 向量BC=4e1+e2 向量CD=8e1-9e2 求证A B D三点共线.
已知e1和e2是平面内所有向量的一组基底,那么下列四组不能作为一组基底的是A.e1和e1+e2 B.e1-2e2和e2-2e1C.e1-2e2和4e2-2e1D.e1-e2和e1+e2为什么选C?
设e1、e2是同一平面内的两个向量,则有( )A、e1、e2一定平行B、e1、e2的模相等C、对一平面内的任一向量a,都有a=γe1+μe2(γ、μ属于R)D、若e1、e2不共线,则对同一平面内a,都有a=γe1+μe2(γ、μ
平面向量的基本定理及坐标表示一、向量e1、e2是平面内一组基底,若ke1+he2恒成立,则k= h= O是平面上一定点,A、B、C是平面上不共线的三点,动点满足向量OP=向量OA+K(向量AB/向量AB的模+向量AC/向
已知e1 e2是平面内两个不共线向量,a=2e1-e2,b=ke1+e2,若a//b,求k的值域
设e1,e2是平面向量a内的两个不共线向量,而e1-4e2与ke1+e2共线,则实数k=?
已知下列三组向量,其中作为表示它们所在平面内所有向量的基底是,详见补充已知下列三组向量:①e1=(-1,2),e2=(5,7) ②e1=(3,5),e2=(6,10)③e1=(2,-3),e2=(1/2,3/4)其中作为表示它们所在平面内所有向量的
e1,e2是平面内两个不共线的向量,向量a=2e1-e2,向量b=ke1+e2,若a平行于b,则k为多少