1.证明 x,y,z均为 整数,并不全是0,如果 gcd(x,y)=1,那么gcd(x,y,z)=1 2.如果a是一个 质数,那么a的任何次方都不会是完美数(完美数=2n n为任何正整数)3.一个完美数不会是任何两个质数的积4.假设Mn=2^n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:45:19
1.证明 x,y,z均为 整数,并不全是0,如果 gcd(x,y)=1,那么gcd(x,y,z)=1 2.如果a是一个 质数,那么a的任何次方都不会是完美数(完美数=2n n为任何正整数)3.一个完美数不会是任何两个质数的积4.假设Mn=2^n
1.证明 x,y,z均为 整数,并不全是0,如果 gcd(x,y)=1,那么gcd(x,y,z)=1
2.如果a是一个 质数,那么a的任何次方都不会是完美数(完美数=2n n为任何正整数)
3.一个完美数不会是任何两个质数的积
4.假设Mn=2^n-1 如果p和q=2p+1都是质数,那么 要么 Mp被q整除,要么Mp+2被q整除,但不会两个同时满足.
1.证明 x,y,z均为 整数,并不全是0,如果 gcd(x,y)=1,那么gcd(x,y,z)=1 2.如果a是一个 质数,那么a的任何次方都不会是完美数(完美数=2n n为任何正整数)3.一个完美数不会是任何两个质数的积4.假设Mn=2^n
1.若gcd(x,y,z)=d => 存在 a,b,c整数使得 x=ad ;y=bd ;z=cd => d是 x,y的公因数 但gcd(x,y)=1
=> d是1的因数 即 1被d整除 => d=1
2.命题有误 :2是质数 => 2^k是偶数具有 2n 形态
" 如果a是一个非2的质数,那么a的任何次方都不会是完美数.(o) "
因a必是奇数 => a^k是奇数具有 2n+1 形态,不会是完美数
3.命题有误 :如2,3是质数 :2*3=6完美数 =>改成 一个完美数不会是任何两个非2质数的积
4.
楼主你是滑铁卢大一的数学系学生?这尼玛不是math135的assignment 6吗?!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
楼主要是承认是的话,可以看在是校友的份上给你答案哦~~~~~...
全部展开
楼主你是滑铁卢大一的数学系学生?这尼玛不是math135的assignment 6吗?!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
楼主要是承认是的话,可以看在是校友的份上给你答案哦~~~~~
收起