正数x,y满足x^2-y^2=2xy,求(x-y)/(x+y)的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:50:21
正数x,y满足x^2-y^2=2xy,求(x-y)/(x+y)的值
xTn@$$*c#[K}Du[VDGbY)3WN ݒ}sj}0uNۡVV E9:]CЭJ2kfm-~,3VZ-יDC*Αc{ڹ92%ƕZz9]R9IFYy8y&i91We`M暤2j^^2*DoFEimçR"whFgN-RzvK2nП'Qق.i١`=sx@!pd۔A+Ы!^%7ҡ0 7WahzƚV7|{z75phϞʯ^ &$&ufܟ®B9'G

正数x,y满足x^2-y^2=2xy,求(x-y)/(x+y)的值
正数x,y满足x^2-y^2=2xy,求(x-y)/(x+y)的值

正数x,y满足x^2-y^2=2xy,求(x-y)/(x+y)的值
可设x=ky,因x、y都是正数,得到k>0;
代入得到k^2-1=2k
(K+1)^2=2
K+1=根号2,负根号2舍去;
k=根号2-1
求的式子=(k-1)/(k+1)=5-3倍根号2

把方程看做关于x的二次方程组求解即可,解出结果是x=(根号二减1)y,代入问题解出结果是一减根号二

等于根号2减1


∵x、y>0,∴2xy>0,∴x²-y²>0,∴x>y;
∴原式变形得:
x²-2xy+y²=2y²
∴﹙x-y﹚²=2y²
∴x-y=√2y
∴x=﹙√2+1﹚y
代人﹙x-y﹚/﹙x+y﹚
=√2y/[﹙2+√2﹚y]
=1/...

全部展开


∵x、y>0,∴2xy>0,∴x²-y²>0,∴x>y;
∴原式变形得:
x²-2xy+y²=2y²
∴﹙x-y﹚²=2y²
∴x-y=√2y
∴x=﹙√2+1﹚y
代人﹙x-y﹚/﹙x+y﹚
=√2y/[﹙2+√2﹚y]
=1/﹙√2+1﹚
=√2-1

收起

x^2-y^2=2xy
(x+y)(x-y)=2xy
两边同除以(x+y)^2:(x-y)/(x+y)=2xy/(x+y)^2
(x-y)/(x+y)=2xy/(x^2+y^2+2xy)=2xy/2x^2=y/x
解方程:x^2-y^2=2xy
x=(1±√2)y
xy为正
所以(x-y)/(x+y)=1/(1+√2)

高手啊