计算∫(-π/3),π/)][x/(1+cosx)]dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:22:59
计算∫(-π/3),π/)][x/(1+cosx)]dx
x){nuu=ߠo$5c+5 +4cS*lS_`gC`U EƱ@M4hY-Ovt9|/>rLKXAigk<_iGPӆ=Ovz6}۟.Y h=mSS64r@֢+JK裪-I3؈lX5tL[#ƣYƚ6yvV

计算∫(-π/3),π/)][x/(1+cosx)]dx
计算∫(-π/3),π/)][x/(1+cosx)]dx

计算∫(-π/3),π/)][x/(1+cosx)]dx
计算[-π/3,π/3]∫[x/(1+cosx)]dx(原题的上限π可能有错,若是π,则此积分的值为无穷大)
原式=[-π/3,π/3]∫[x/2cos²(x/2)]dx=[-π/3,π/3]∫d(x/2)/cos²(x/2)=tan(x/2)︱[-π/3,π/3]
=tan(π/6)-tan(-π/6)=2tan(π/6)=2(√3)/3