已知函数f(x)=(x2+ax+a)/x,且a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 01:28:52
已知函数f(x)=(x2+ax+a)/x,且a
已知函数f(x)=(x2+ax+a)/x,且a<1 (1) 当x∈[1,+∞)时
已知函数f(x)=(x2+ax+a)/x,且a<1
(1) 当x∈[1,+∞)时,判断f(x)的单调性并证明:
(2) 在(1)的条件下,若M满足f(3m)>f(5-2m),试确定M的取值范围.
(3) 设函数g(x)=x·f(x)+|x2-1|+(k-a)x-a,K为常数,若关于x的方程g(x)=0,在(0,2)上有两个解x1,x2,求K的取值范围.
已知函数f(x)=(x2+ax+a)/x,且a
f'(x)=(x^2+3x+2)e^x
求出x=-1,-2两个点处的一阶导数等于0,再根据二阶导数的正负即可判断其单调区间.
其一阶导数分别在x=-2和x=-a处等于零.
由题设,在x=-2处
f(x)=((-2)^2-2a+a)e^-2=6e^-2
即
4-a=6
a=-2
当a=1时,将a=1带入式中,并求出一阶导数
f'(x)=(x^2+3x+2)e^x
求出x=-1,-2两个点处的一阶导数等于0,再根据二阶导数的正负即可判断其单调区间。
2)同理求出一阶导数为f'(x)=(x^2+(2+a)x+2a)e^x
其一阶导数分别在x=-2和x=-a处等于零。
由题设,在x=-2处
f(x)=((-2)^2-2...
全部展开
当a=1时,将a=1带入式中,并求出一阶导数
f'(x)=(x^2+3x+2)e^x
求出x=-1,-2两个点处的一阶导数等于0,再根据二阶导数的正负即可判断其单调区间。
2)同理求出一阶导数为f'(x)=(x^2+(2+a)x+2a)e^x
其一阶导数分别在x=-2和x=-a处等于零。
由题设,在x=-2处
f(x)=((-2)^2-2a+a)e^-2=6e^-2
即
4-a=6
a=-2
解毕。
收起