已知A、B为锐角,正切((A-B)/2)=-1/3,余弦A-余弦B=根号5/5,求正弦A-正弦B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:38:57
已知A、B为锐角,正切((A-B)/2)=-1/3,余弦A-余弦B=根号5/5,求正弦A-正弦B
xVN@~*UIeCԢz#ٯ@rzJ<@j" Z(]s+tflL*J+gfgfv7\=9kkztO]->v|EK0W$3 D$K'5^Ixg_su↓FYJn4Z12`.trd*υ|ڞR𹌎 gJ8_ęFdzJrO

已知A、B为锐角,正切((A-B)/2)=-1/3,余弦A-余弦B=根号5/5,求正弦A-正弦B
已知A、B为锐角,正切((A-B)/2)=-1/3,余弦A-余弦B=根号5/5,求正弦A-正弦B

已知A、B为锐角,正切((A-B)/2)=-1/3,余弦A-余弦B=根号5/5,求正弦A-正弦B
tg(a-b)=2tg(a-b/2)/(1-tg((a-b)/2)*tg((a-b)/2)) = -2/3 / (1-1/9)= -3/4


∵ tan[(A-B)/2] = sin(A-B)/[1+cos(A-B)]
tan[(A-B)/2] = -1/3
∴ sin(A-B)/[1+cos(A-B)] = -1/3
==> 1+cos(A-B) = -3sin(A-B) /** 两边平方

全部展开


∵ tan[(A-B)/2] = sin(A-B)/[1+cos(A-B)]
tan[(A-B)/2] = -1/3
∴ sin(A-B)/[1+cos(A-B)] = -1/3
==> 1+cos(A-B) = -3sin(A-B) /** 两边平方
==> 1+2cos(A-B) + cos²(A-B) = 9sin²(A-B) /**sin²(A-B) = 1-cos²(A-B)
==> 5cos²(A-B) + cos(A-B) -4 = 0
解得:cos(A-B) = -1;或 cos(A-B) =4/5;
若cos(A-B) = -1, 则tan(A-B)/2 =tan(kπ+π/2)无意义,因此舍去;
∴ cos(A-B) = 4/5;
sin(A-B) = tan[(A-B)/2]*[1+cos(A-B)] = -3/5;
A, B为锐角,因此A (cosA-cosB)² + (sinA-sinB)² = cos²A+cos²B-2cosAcosB+sin²A+sin²B-2sinAsinB
= 2 -2cos(A-B)
==> (sinA-sinB)² = 2-2cos(A-B) - (cosA-cosB)²
= 2 - 2*4/5 - 1/5 = 1/5;
==> sinA-sinB = ±√5/5
因为 A sinA - sinB = - √5/5;

收起

因为A、B为锐角, 0所以sin(a-b)=-3/5 cos(a-b)=4/5
cosa-cosb=√5/5 (cosa)^2+(cosb)^2-2cosacosb =1/5 (1)
令(sina-sinb)=t
(sina-sinb)^2=(sina)^2+(sinb)^2-2sina...

全部展开

因为A、B为锐角, 0所以sin(a-b)=-3/5 cos(a-b)=4/5
cosa-cosb=√5/5 (cosa)^2+(cosb)^2-2cosacosb =1/5 (1)
令(sina-sinb)=t
(sina-sinb)^2=(sina)^2+(sinb)^2-2sinasinb = t^2 (2)
(1)+(2)得 2-2(cosacosb+sinasinb)=2-2cos(a-b)=1/5+ t^2
t^2= 2-2cos(a-b)-1/5=2-2*4/5-1/5=1/5
因为cosa-cosb=√5/5 >0 ,所以a所以 t为负值,t=-√5/5

收起