设F为椭圆的一个焦,P为椭圆上任一点,以线段PF为直径的圆以椭圆长轴为直径的圆的位置关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:29:08
设F为椭圆的一个焦,P为椭圆上任一点,以线段PF为直径的圆以椭圆长轴为直径的圆的位置关系
xőN@F@ڲ쮡P45]D`a@ ]̜xO;oq͢\zvi.djtʬ]AWV|"u8)΀<|W=aQD.s<~u-/76kBb#揅9᷆{=s(h<8tRUm=K絟ia cd*(쿞Ի@(OT@6jl?n1B&ʜ꽒0 B훜"mXhIUNHZ2Ԫ̹t%jVKa_3n \jeӂeՊQ3\f:/*W70

设F为椭圆的一个焦,P为椭圆上任一点,以线段PF为直径的圆以椭圆长轴为直径的圆的位置关系
设F为椭圆的一个焦,P为椭圆上任一点,以线段PF为直径的圆以椭圆长轴为直径的圆的位置关系

设F为椭圆的一个焦,P为椭圆上任一点,以线段PF为直径的圆以椭圆长轴为直径的圆的位置关系
设椭圆是x²/a²+y²/b²=1,(a>b>0)
设椭圆右焦点是F',连接PF'
以长轴为直径的圆的圆心是O(0,0),半径是a,
以PF为直径的圆的圆心设为M,半径是(1/2)*PF,
则MO‖PF',且OM=(1/2)*PF'=(1/2)*(2a-PF)=a-(1/2)PF
即圆心距=两圆半径之差
所以是内切关系

小圆一定在大圆的里面

设F为椭圆的一个焦,P为椭圆上任一点,以线段PF为直径的圆以椭圆长轴为直径的圆的位置关系 一道圆锥曲线题,椭圆已知一个椭圆的焦点为F,椭圆上存在一点P,满足以椭圆短轴为半径的园与线段PF相切于线段PF中点,则该椭圆离心率为 已知一个椭圆的一个焦点为F,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点.求此椭圆的离心率 椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点是F(1,0),已知椭圆短轴的两个三等分点与一个焦点构成正三角形,且Q(x,y)为椭圆上任一点,求以Q为切点的椭圆上的切线方程. 椭圆x^2/25+y^2/9=1,P(x,y)为椭圆上任一点,若角F1PF2为锐角,求点P的横坐标范围 椭圆x²/a²+y²/b²=1的两焦点为F1,F2,P为以椭圆长轴为直径的圆上任一点,则PF1*PF2= 高二数学:椭圆c:x^2/a^2+y^2/b^2=1的离心率为2跟号5/5,且A(0,1)是椭圆的顶点 ①求椭圆方程 ②过点A作斜率为2的直线ll,设以椭圆c的右焦点F为抛物线E:y^2=2px(p>0)的焦点,若点M为抛物线E上任 设椭圆x²/4+y²=1的左焦点为F,P喂椭圆上一点,其横坐标为根号3,求PF的绝对值. 若右焦点为F的椭圆(x-1)^2/4+y^2/3=1内有一点P(2,1),M为椭圆上任一点,求|MP|+2|MF|的最小值. 已知P是椭圆上任一点,F1,F2分别是椭圆两个焦点,若三角形PF1F2的周长为6,且椭圆的离心率为1/2.求椭圆标准方程 已知椭圆C的对称轴为坐标轴,一个焦点为F(0,-根号2),点M(1,根号2)在椭圆上(1)求椭圆方程(2)设P为椭圆C上一点,若角PMF=90°,求P点坐标 已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切线段PF的中点,则该椭圆的离心率为 椭圆x^2/25+y^2/9=1,P(x,y)为椭圆上任一点,求X*Y,2X+Y的最大最小值 已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF中点,则椭圆离心率为? 椭圆定义怎样证明定义:平面内到两定点距离之和为一个常数的点的轨迹为椭圆就是在下面的一个圆锥里塞两个球,与椭圆相切,然后在椭圆上任取一点那个 设F1、F2为椭圆x²/9+y²/4=1的两个焦点,P为椭圆上的一点,已知P、F1、F2是一个直角三角形...设F1、F2为椭圆x²/9+y²/4=1的两个焦点,P为椭圆上的一点,已知P、F1、F2是一个直角三角形的三 已知椭圆的一个焦点F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切与线段PF的中点,则该椭圆的离心率为 已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,求椭圆离心率