∫x* ln (x-1) dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:36:06
∫x* ln (x-1) dx
x){ԱBK!'OABPS!&H~ .ϧxy끌g3 aNNX5TH.gºPUqF)PmP56$4B.ByF =PQmg<;P`BtX

∫x* ln (x-1) dx
∫x* ln (x-1) dx

∫x* ln (x-1) dx
用分部积分法:
∫x*ln(x-1)dx
=1/2∫xln(x-1)dx^2
=1/2x^2ln(x-1)-1/2∫x^2dln(x-1)
=1/2x^2ln(x-1)-1/2∫x^2/(x-1)dx
=1/2x^2ln(x-1)-1/2∫(x^2-1+1)/(x-1)dx
=1/2x^2ln(x-1)-1/2∫[x+1+1/(x-1)]dx
=1/2x^2ln(x-1)-1/4x^2-x/2-1/2ln(x-1)+C