如图是正方形ABCD和CEFG,连接DG,BE并延长DG交BE于点H,求证:DG=BE,DG⊥BE 若将正方形CEFG绕点C任意旋转

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:03:42
如图是正方形ABCD和CEFG,连接DG,BE并延长DG交BE于点H,求证:DG=BE,DG⊥BE 若将正方形CEFG绕点C任意旋转
x͐QJ@.W!ήk$TR+U V`I I-xlrw@fvfsŃ/2;ym`[#D4^{Š/rL

如图是正方形ABCD和CEFG,连接DG,BE并延长DG交BE于点H,求证:DG=BE,DG⊥BE 若将正方形CEFG绕点C任意旋转
如图是正方形ABCD和CEFG,连接DG,BE并延长DG交BE于点H,求证:DG=BE,DG⊥BE 若将正方形CEFG绕点C任意旋转

如图是正方形ABCD和CEFG,连接DG,BE并延长DG交BE于点H,求证:DG=BE,DG⊥BE 若将正方形CEFG绕点C任意旋转
DCG 全等于BCE (DC=BC ,∠DCB=∠BCE,CG=CE)
∴DG=BE,∠CDG=∠CBE
∵∠CDG+∠DGC=90°且∠DGC=∠BGH(对顶角)
∴∠CBE+∠BGH=90°
∴DG⊥BE

如图是正方形ABCD和CEFG,连接DG,BE并延长DG交BE于点H,求证:DG=BE,DG⊥BE 若将正方形CEFG绕点C任意旋转 在正方形ABCD和正方形CEFG有公共顶点C.试证:BF=DG 正方形ABCD,正方形CEFG,求证BE垂直于DG 如图所示,是正方形ABCD和CEFG,连接DG,BE并延长DG交BE于点H.求证:DG=BE,DG⊥BE若将正方形CEFG绕点C任意旋转α角,则上述结论还成立吗?试证明 在图中,连接DG、BE,设正方形ABCD、CEFG的边长分别为a,b求BE的平方+DG的平方的值(利用勾股定理) 如图(1),正方形ABCD和正方形CEFG有一公共顶点C,连接BG,DE. 如图四边形ABCD和四边形CEFG都是正方形,连接BE,GD,H是DG的中点,连接CH(1)如图1当E在CD上时探究BE与CH的数量关系和位置关系.(2)如图2把正方形CEFG绕点C顺时针旋转一个锐角其他条件不变问(1 如图1,正方形ABCD与正方形CEFG的顶点C重合,如图1,(1)正方形ABCD与正方形CEFG的顶点C重合,正方形CEFG绕着点C按顺时针的方向旋转a(0°<a<60°)角,连接DG、BE相交于点P,求∠BPD的度数;(2)如 已知正方形ABCD和正方形CEFG,连接AF取AF的中点M,判断MD和ME的关系. 如图,在正方形ABCD和正方形CEFG中,AD=6,CE=2根号2,点F在CD上,连接DE,连接BG并延长交CD于点M,交DE于点H.则BH的长度为___.辅助线:连接EG,DG 如图,在正方形ABCD中,点E是AB上的一点,连接CE,以CE为一边,在CE的上方作正方形CEFG,连接DG.求证:△CBE≌△CDG 四边形abcd,cefg都是正方形,b,c,g共线,be延长线交dg于h.求证:bh垂直dg 已知正方形ABCD和正方形CEFG有一个公共顶点又连接AF,M是AF中点探究DM和MG之间的关系 如图,正方形ABCD和正方形AEFG有一个公共顶点,把正方形AEFG绕点 旋转到如图所示的位置,连接DG求证:DG=BE 如图所示,四边形ABCD和CEFG都是正方形.连接AF,连接BE并延长交AF于H.求角AHB的度数 如图,正方形ABCD及正方形AEFG,连接BE,CF,DG.则BE:CF:DG等于 ABCD与CEFG均为正方形,链接DG,BE交于H,求证AHF三点共线 如图(1),已知正方形ABCD和正方形CEFG共有一个顶点G,连接BG、DE.(1)问BG、DE有什么关系