一道大学线性代数证明题:设n阶矩阵A满足A的平方=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:40:59
一道大学线性代数证明题:设n阶矩阵A满足A的平方=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
xRMn@J /H  n4%QBL4$8 b̛B=Uʪyʦt{пeΒ=2gqʿ"Í qA+o2Ycz>BlG@N =9#DL%[6a+a4TCo4,w0/Q[~]hY%Yh틲֤ `x [5!ԣ{q9"ŕPFEFx0mۇ; AX&mojrN|<5.kޢ-7L2;fJ \L1KֶϡzPO&իPrz7}Iw#|Cx!K=9Z/}gϼ`q`/("ƈDbMzbы{X#U:?żrOIuI9E#^ f*H_ك<̿

一道大学线性代数证明题:设n阶矩阵A满足A的平方=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
一道大学线性代数证明题:设n阶矩阵A满足A的平方=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n

一道大学线性代数证明题:设n阶矩阵A满足A的平方=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
这是一个很简单的线代证明了!
因为A^2=A,所以A(A-E)=0
则有:
R(A)+R(A-E)小于等于n
又因为(A-E)+(-A)=-E
则有:
R(-A)+R(A-E)大于等于n
由于R(-A)=R(A)
所以R(A)+R(A-E)大于等于n
由夹逼定理可知:
R(A)+R(A-E)等于n
陈文灯的数学考研辅导有专门介绍,就是一个定理的使用!
相信能够解决您提出的问题!

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程
Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;
又由R(A)+R(B)>=R(A+B);
可得R(A)+R(A-E)=R(A)+R(E-A)>=R(A+E-A)=R(E)=n;所以R(A)+R(A-E)=n故A-E的每个列向量都是方程 Ax=0的解,由于A-E...

全部展开

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程
Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;
又由R(A)+R(B)>=R(A+B);
可得R(A)+R(A-E)=R(A)+R(E-A)>=R(A+E-A)=R(E)=n;所以R(A)+R(A-E)=n

收起

一道大学线性代数证明题:设n阶矩阵A满足A的平方=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n 设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A-I)=n.能用大学的线性代数知识来证明吗? 线性代数证明题 设n阶方阵A满足A*(A的的转置矩阵)=E,切|A| 大学线性代数证明题,设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值我是这样证明的因为AAT=E,所以A为正交 一道大学线性代数可逆矩阵题设A为m阶可逆矩阵,B为n阶可逆矩阵,C为n x m 矩阵.证明:分块矩阵D=(O AB C)是可逆矩阵,并求D的逆矩阵及伴随矩阵 线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆. 线性代数:设A是n阶矩阵,满足A^2=A.证明:r(A)+r(A-E)=n 大学题目 线性代数 设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0 设n阶矩阵A满足A^2=E,且|A+E|≠0,证明A=E线性代数 问一道线性代数有关矩阵特征值与特征向量的问题...设n阶矩阵A和B满足 R(A) + R(B) < n,证明A与B有公共的特征值,有公共的特征向量. 问一道线性代数题:设A为n阶方阵,满足AA^T=E(E是n阶单位矩阵),|A| 问一道关于相似矩阵的证明题(线性代数)设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵.证明:对任意常数t,tE-A与tE-B相似. 大学线性代数可逆矩阵设A,B均为n阶矩阵.证明:分块矩阵(A B)是可逆矩阵当且仅当A+B与A-B均为可逆矩阵B A 设A为n阶矩阵,证明r(A^n)=r(A^(n+1))线性代数 线性代数的一道题,设A为n阶非零矩阵,E为n阶单位矩阵,若A的立方=0,则E-A 和E+A可逆,请问为什么? 麻烦给你证明过程, 线性代数题:证明:如果n阶实对称矩阵A满足A^5-2A^4+5A^... 一道线性代数题,请会做的写下答案,100分求答案!设n阶矩阵A、B满足矩阵方程:A*A-AB+E=O其中E是n阶单位矩阵,O是n阶零矩阵,A是正交矩阵.试证:B是对称矩阵 请教一道大学线性代数问题.n*n矩阵A满足 A的平方+I=J .J是一个由N*N个 1 组成的矩阵.I是单位矩阵.证明N不能是偶数I也是N*N的 A是整数矩阵。忘了说了。不好意思