关于线性代数 矩阵的题目.1、设n阶方程满足A^3+2A^2+A-E=0.证明矩阵A可逆,并求A^(-1) .2、设n阶矩阵A满足3A(A-En)=A^3.证明En-A的逆矩阵为(En-A)^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:16:04
关于线性代数 矩阵的题目.1、设n阶方程满足A^3+2A^2+A-E=0.证明矩阵A可逆,并求A^(-1) .2、设n阶矩阵A满足3A(A-En)=A^3.证明En-A的逆矩阵为(En-A)^2
xRN@|^)ɚ54D_jcP+@IRaݶBN|35ϑ)6kEWq~|syv45JfՂ3Z*6wsEldsȳN:zj5Fj)N3:)"ٳ*g]D|P6JI *Zb|ldgSi[ŷ{T>7ws B'lA l4yZm޳ b6谷r\Ou/$`u@1¢߅ Pr g1ƥ.6Ī5>)[ M;o8u?Tr

关于线性代数 矩阵的题目.1、设n阶方程满足A^3+2A^2+A-E=0.证明矩阵A可逆,并求A^(-1) .2、设n阶矩阵A满足3A(A-En)=A^3.证明En-A的逆矩阵为(En-A)^2
关于线性代数 矩阵的题目.
1、设n阶方程满足A^3+2A^2+A-E=0.证明矩阵A可逆,并求A^(-1) .
2、设n阶矩阵A满足3A(A-En)=A^3.证明En-A的逆矩阵为(En-A)^2

关于线性代数 矩阵的题目.1、设n阶方程满足A^3+2A^2+A-E=0.证明矩阵A可逆,并求A^(-1) .2、设n阶矩阵A满足3A(A-En)=A^3.证明En-A的逆矩阵为(En-A)^2
只要能说明AB=E,则两矩阵均可逆,且互为逆阵
1、A^3+2A^2+A-E=0得:A^3+2A^2+A=E,则A(A^2+2A+E)=E
因此A可逆,逆矩阵为A^2+2A+E
2、3A(A-En)=A^3,得3A^2-3A=A^3,即3A^2-3A-A^3=0
(En-A)(En-A)^2
=(En-A)^3
=En-3A+3A^2-A^3
=En 由上面那个式子可推出
因此(En-A)的逆矩阵为(En-A)^2

关于线性代数 矩阵的题目.1、设n阶方程满足A^3+2A^2+A-E=0.证明矩阵A可逆,并求A^(-1) .2、设n阶矩阵A满足3A(A-En)=A^3.证明En-A的逆矩阵为(En-A)^2 关于线性代数的一道选择题,遇到题目不知如何下手,设A是m×n矩阵,C是n阶可逆关于线性代数的一道选择题,遇到题目不知如何下手,设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r① 线性代数关于矩阵的题目 线性代数关于矩阵的题目 线性代数初学者:分块矩阵的伴随矩阵题目设n阶矩阵A和s阶矩阵B可逆,求 矩阵 A O ^-1 ( ) C B 不怎么会打,就是求它的逆矩阵 《线性代数》中关于矩阵的一题目:设A是n阶矩阵,P是n阶可逆矩阵,已知n维列向量a是矩阵P-1(P的负1次方)AP的属于特征值λ的特征向量,则矩阵A属于特征值λ的特征向量是______? 一道线性代数的题目 关于矩阵 线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆. 设A为n阶矩阵,证明r(A^n)=r(A^(n+1))线性代数 线性代数题目:证明线性相关线性代数题目:设n阶矩阵H是正定矩阵,R^n中的非零向量组a1,a2,...an满足(ai)THai=0(i=/j,i,j=1,2,...,n),试判断向量组a1,a2,...,an的线性相关性. 求解几道线性代数题目(1)设A,B都是n阶对称矩阵,则下列矩阵中()不是对称矩阵.(A)A^T B ,AB C, kA(k为常数) D A+B (2)设A是4×3矩阵,B是3×4矩阵,下列说法正确的是()A, AB的列向量组线性 线性代数,n阶矩阵 大学题目 线性代数 设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0 问一道关于相似矩阵的证明题(线性代数)设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵.证明:对任意常数t,tE-A与tE-B相似. 一道关于线性代数 特征值,题目是这样的:设A为n阶实对称矩阵,且A³-A²+A-E=01.证明A是正定矩阵2.能否由以上条件确定A具体是哪个矩阵?说明理由我的困惑在于,我是想直接把A替换成λ,然 线性代数题目,关于伴随矩阵的如图,求方法 有道线性代数关于求矩阵函数的题目, 关于线性代数n阶行列式题目求解