.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:35:44
x){M/{9c۳i;_l6?m|{tu\m
t^o|6ٌOlh{>%Pӝ۞mlzھi6MR>m-/ m\!<-
G]cWM}#[g
Ov/uk}cc-L~qAb G
.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.
.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.
.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.
A^2-3A=2E
A*(A-3E)/2=E所以A可逆
逆矩阵为A^(-1)=(A-3E)/2
.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.
已知A为n阶方阵,且满足关系式A^2+3A+4E=0,则(A+E)^-1=
已知n阶方阵A满足关系式A^2-3A+2I=0,其中I是n阶单位矩阵,且A的特征值全部为1,试证A=I
已知n阶方阵A满足关系式A^2-3A+2I=0,其中I是n阶单位矩阵,且A的特征值全部为1,试证A=I1楼是严重不对的
已知N阶方阵A满足A^2=4A,证明A-5E可逆?
已知n阶方阵A满足A^2+2A-3E=0,证明A可对角化
已知n阶方阵A满足 A^2-3A+E=0,则A的逆矩阵为多少?
线性代数证明题 已知n阶方阵A满足关系式A的平方-3A-2E=0,证明A是可逆矩阵,并求出其可逆矩阵
线性代数:已知n阶方阵A满足A^2=E,证明A-E可逆;
已知n阶方阵A,满足A^3+A^2-2A=0,I是n阶单位阵,证明矩阵A+I必可逆
已知n阶方阵A满足A^2-2A-3E=0 证明A可逆 并求A^-1
已知A为n阶方阵,且满足A^2-3A-4E=0,证明:A可逆,并求A-1次方
已知n阶方阵A满足A平方=0,证明E+3A可逆,并求其逆矩阵
已知n阶方阵A满足A2+2A-3E=0,证明A可逆,并写出A的逆距阵的表达式
已知n阶方阵A满足A2-2A+3E=0,用A的多项式表示A的逆矩阵
已知四阶方阵A满足|A-E|=0,方阵B=A^3-3A^2,满足BB^T=2E,且|B|
已知矩阵A,B为n阶方阵,且满足A=B,则必有什么关系
若n阶方阵A满足A^2-3A-2E=O,那么A^-1=_,