求定积分.(e^arctan x)/[(x^2+1)^(3/2)]的原函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:10:28
求定积分.(e^arctan x)/[(x^2+1)^(3/2)]的原函数
x){YϗѦX\PQgmao|VӾO>&HLv6c룎թqZŕ) ]WolzOwjՄݢ֬B3B_BMn'X-Ԓd4*}(ҺRA%PctvPQ,$u@N@E  ~EE4VƂӨ4Gvֳ/.H̳Z

求定积分.(e^arctan x)/[(x^2+1)^(3/2)]的原函数
求定积分.(e^arctan x)/[(x^2+1)^(3/2)]的原函数

求定积分.(e^arctan x)/[(x^2+1)^(3/2)]的原函数
∵∫e^y*cosydy=e^y*(cosy+siny)/2+C (C是积分常数)
∴ ∫e^(arctanx)dx/(x²+1)^(3/2)
=∫e^y*sec²ydy/sec³y (令y=arctanx,则cosy=1/√(x²+1),siny=x/√(x²+1))
=∫e^y*cosydy
=e^y*(cosy+siny)/2+C (C是积分常数)
=e^(arctanx)[1/√(x²+1)+x/√(x²+1)]/2+C
=(x+1)e^(arctanx)/[2√(x²+1)]+C.