若函数f(x)在[a,b]上连续,且f(x)>=0,且f(x)dx在[a,b]上的积分等于0,求证明在[a,b]上,f(x)恒等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:06:41
若函数f(x)在[a,b]上连续,且f(x)>=0,且f(x)dx在[a,b]上的积分等于0,求证明在[a,b]上,f(x)恒等于0
xőJ@_ !dW\-Dd7Dm[EDAD^JVeڤa ͌wqnzӧmaɝz\~ *\*^M>*>Ng~0YU[ѿc| _پ~j֢A=?^;QPliI4Hԑ-p'J8n-d

若函数f(x)在[a,b]上连续,且f(x)>=0,且f(x)dx在[a,b]上的积分等于0,求证明在[a,b]上,f(x)恒等于0
若函数f(x)在[a,b]上连续,且f(x)>=0,且f(x)dx在[a,b]上的积分等于0,求证明在[a,b]上,f(x)恒等于0

若函数f(x)在[a,b]上连续,且f(x)>=0,且f(x)dx在[a,b]上的积分等于0,求证明在[a,b]上,f(x)恒等于0