设y=f(x)(x>=0)是严格单调递增的连续函数,f(0)=0,x=g(y)是它的反函数,证明 ∫(0-a)f(x)dx+∫(0-b)g(y)d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:17:50
设y=f(x)(x>=0)是严格单调递增的连续函数,f(0)=0,x=g(y)是它的反函数,证明 ∫(0-a)f(x)dx+∫(0-b)g(y)d
xŏN@_nĴ@LrP`hE$Y/Q#$m]+2ɟa϶".%mDl9.sCr~v aP`ZĤYssҮt૤{!YVۛ^6hUjƥq4ȟ'2 <ؼB0-;]#3}8 Q,&pvǃAc!c*zSy?Ss$7

设y=f(x)(x>=0)是严格单调递增的连续函数,f(0)=0,x=g(y)是它的反函数,证明 ∫(0-a)f(x)dx+∫(0-b)g(y)d
设y=f(x)(x>=0)是严格单调递增的连续函数,f(0)=0,x=g(y)是它的反函数,证明 ∫(0-a)f(x)dx+∫(0-b)g(y)d

设y=f(x)(x>=0)是严格单调递增的连续函数,f(0)=0,x=g(y)是它的反函数,证明 ∫(0-a)f(x)dx+∫(0-b)g(y)d
详细答案已发送,请查收

你好啊,从它的反函数入手证明即可,将完整的题发过来,我看我会不会

设y=f(x)(x>=0)是严格单调递增的连续函数,f(0)=0,x=g(y)是它的反函数,证明 ∫(0-a)f(x)dx+∫(0-b)g(y)d 单调函数的严格性比如函数f(x)=X^3,当X为0时导数是0,那它是“严格”单调递增的吗 什么叫严格的单调递增函数?怎么理解严格?做到一道题,f(x)是x属于N的严格单调递增函数,若m,n互质,有f(m,n)=f(m)*f(n),f(19)=19,求f(f(19),f(98))答案中有这样一段看不懂:因为f(x)是严格的单调递增函数 一道定积分的题目设y=f(x)(x>=0)是严格单调递增的连续函数,f(0)=0,x=g(y)是它的反函数,证明 ∫(0-a)f(x)dx+∫(0-b)g(y)dy>=ab 设偶函数y=f(x)在区间(0,+∞)上单调递增,且1 设函数f(x)是定义在(0,+∞)上的单调递增函数,f (x)=f(x/y)+f(y),f(3)=1,证明f(x)+f(x-1/5)大于等于2有急用的、 设函数f(x)是定义在(0,+∞)上的单调递增函数,f (x)=f(x/y)+f(y),f(3)=1,证明f(x)+f(x-1/5)大于等于2急用、、 ◆高数 证明题 “设f''(x) > 0,x∈R,且f(0) = 0,证明:函数f(x) / x在区间(0,+inf)内严格单调递增” 怎么证明f(x)=SinX在[-π/2,π/2]上严格单调递增. 设f(x)为[a,b]上的严格单调递增函数,且a 设f(x)=e∧x+sinx,g(x)=x-2,(1)求证y=f(x)在(0,+∞)上单调递增 设f(x)=e∧x+sinx,g(x)=x-2,(1)求证y=f(x)在(0,+∞)上单调递增 函数y=f(x)导数y’>0是函数f(x)单调递增的 %E如题目 设函数y=f(x)是微分方程y-2y'+4y=0的一个解.若f(x0)>0,f'(x0)=0,则函数f(x)在点x0某个领域内单调递增? 设函数f(x)=sinx-根号3cosx(x属于[-π,0]的单调递增区间是 设函数f(x)=sinx-根号3cosx(x属于[-π,0])的单调递增区间是 设函数y=f(x)是严格单调的三阶可导函数,而且f'(x)≠0,求(f^-1)^(3)(y)(即f(x)的反函数的三阶导数).好像是数学分析第一册习题四的最后一题.只有答案((f^-1)^(3)(y)={-f'''(x)/[f'(x)]^4}+{3(f''(x))^2/[f'(x)] 函数的单调性证明题已知函数y=f(x)的定义域是[a,b], a<c<b.当x∈[a,c]时,y=f(x)单调递减;当x∈[c,b]时,y=f(x)单调递增.求证:f(x)在x=c时取得最小值.【严格证明】