对可导函数的间断点一定是第二类间断点这个结论的疑问既然它导函数存在第二类间断点就说明该点的左导数不能等于右导数,那既然如此在该点就违反了导数可导的条件(即左导数=右导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:34:49
对可导函数的间断点一定是第二类间断点这个结论的疑问既然它导函数存在第二类间断点就说明该点的左导数不能等于右导数,那既然如此在该点就违反了导数可导的条件(即左导数=右导数
对可导函数的间断点一定是第二类间断点这个结论的疑问
既然它导函数存在第二类间断点就说明该点的左导数不能等于右导数,那既然如此在该点就违反了导数可导的条件(即左导数=右导数),那又怎么说明其在(a,b)内可导呢?
对可导函数的间断点一定是第二类间断点这个结论的疑问既然它导函数存在第二类间断点就说明该点的左导数不能等于右导数,那既然如此在该点就违反了导数可导的条件(即左导数=右导数
一个函数的导函数存在第二类间断点只能说明它(指导函数)的导数(导函数的导数就是原函数的二阶导)在该点的左极限不等于右极限.也就是说这个函数的二阶导在这个点上的左极限不等于其右极限f''(x-) != f''(x+);而不能说明该点的左导数不等于右倒数(f'(x-) != f'(x+)).
我们把这样的函数称为一阶平滑的.
举个分段函数的例子给你就明白了:
设f(x)定义如下:
当x0时, f(x) = x^2.
这个函数的一阶导是存在的,且f'(x)可以这样描述:
当x
可导函数在给出来的时候都会加一句在(a,b)上可导,表示函数在a点可能不可导,即a点可能就是函数的间断点
或者在R上可导,则表示函数没有间断点
可导函数只是函数在一定的定义区间内满足左导数=右导数的一个定义
以上是个人理解,仅供参考...
全部展开
可导函数在给出来的时候都会加一句在(a,b)上可导,表示函数在a点可能不可导,即a点可能就是函数的间断点
或者在R上可导,则表示函数没有间断点
可导函数只是函数在一定的定义区间内满足左导数=右导数的一个定义
以上是个人理解,仅供参考
收起